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PREFACE

This paper results from a voluntary evening course in trajectory estimation

at the IBM Real Time Gomputer Complex, Manned Spaceflight Center (RTCC,

MSC). It is written for programmers and navigators assigned to implement

the navigation system, but who may arrive without previous knowledge of the

subject'. These people need to understand the applied system as soon as possible

without necessarily becoming experts in all the individual disciplines. The at-

tempt, therefore, is to include all necessary background material and provide

compact, simple instruction on how to formulate the trajectory estimation prob-

lem for sohtion by a digital computer. This brief treatment certainly is not a

substitute for formal study of trajectory estimation from texts in estimation

theory and astrodynamics.

A sufficient background for understanding the presented material is a B.S.

in mathematics, science, or engineering, including courses in differential equa-

tions, matrix algebra, and vector analysis. Some introduction to celestial

mechanics and probability theory is helpful but not necessary.

The approach is first to review some useful facts about matrices and vectors

and formulate partial derivatives, first-order Taylor series, Newton's method

of successive approximations, and quadratic forms all in matrix notation. Then

the estimation equations are derived from fundamentals without relying on any

previous background in probability. The derivation is simplified by assuming
that the dynamic model of the spacecraft trajectory is perfect. Later on, since

model errors are inevitable, methods are suggested for empirically tuning the
: system to improve its performance.

Attention is focused on the derivation of the estimation equations; and many
associated problems of a complete, implemented system are not included. For

example, the manual does not explain numerical methods for integrating the

equations of motion or calculating the state transition matrix. Other problems

such as editing observations, calculating refraction and local vertical, and pro-
gramming for displays are not mentioned.

Most of the theory is contained in the first fifteen sections. Beyond that

is a collection of applications and ideas that may be interesting (or even useful).

I feel that I have only partially accomplished my purpose in writing this

,nanual. Hopefully, a future revision would have increased scope, clarity, and

simplicity. There are bound to be mistakes, and I would be grateful to anyone
who sends in corrections.
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INTRODUCTION TO TRAJECTORY ESTIMATION

FOR RTCC PROGRAMMERS

i. INTRODUCTION

The navigational problem considered by this paper is to determine where

the spacecraft is and where it is going. If a navigator had exact knowledge of

initial conditions and acting forces and a perfect solution to the equations of

motion, trajectory estimation would not be needed. Unfortunately this is not

the case. Measuring techniques used to determine initial conditions suffer

from hardware and environmental limitations. External forces due to gravity,

drag, thrusting, and venting are not known precisely. And integration techniques

are such that predictions tend to diverge from the truth after a time, due to trun=
cation and round-off errors and errors in the known forces. In view of these

limitations a navigator must have some statistical means of resolving measure-
ments into a best estimate of initial conditions, and he must do this at regular

intervals to re-estimate current conditions. This is just a fancy way of des-

cribing any navigator's traditional task of using measurements to determine a
fix and velocity vector.

', Our problem, then, is to formulate a mathematical method of processing

_" radar and optical measurements to estimate the position and velocity of a

%': spacecraft. The spacecraft may be in either free flight (power off) or a powered

'" maneuver, as long as the equations of motion are known. For example, if the

'_<. spacecraft is in free flight and tracked in an earth-centerEd inertial frame, the
-_ equation of motion is

:,,, .. -Ur g(- -
_. I. i -- = _ + r, r, t)_L" r

Irl

where r and r are the position and velocity of the spacecraft, t is time, _ is the

gravitational constant, and g is a function describing _erturbations from the

Keplerian motion. For the purpose of this paper we ,_re not concerned with the

formula for r (1. 1) or its derivation. We only need to know that r is a function
_., • •

_ of r, r, and t, where r and r are the trajectory parameters to be estimated.

For a powered maneuver we only need to know what additional trajectory param-
,o

eters are used in the formula for r to describe the thrusting forces and changing

mass. The estimated trajectory parameters become the initial conditions for

integrating the equation of motion to predict new (a priori) values of the param=
eters at a future time.

i
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The spacecraft may be observed from earth or from another spacecraft;
or the spacecraft itself may measure quantities related to other bodies. The

measurements are range, range-rate, and various angles, all of which can be
formulated from a knowledge of the geometry and dynamics. The actual measure-

ments and times are transmitted to the memory of a digital computer where they

are available to the processor. The program solves a system of equations (called

a filter) expressing the best estimates of the parameters us functi,,us of the mea-

surements. The computations for this are executed at the command of a con-

troller. The filter is said to be sequential (or stepwise, or recursive) because

it is used repeatedly while navigating.

The next several sections contain some fundamentals which should be under-

stood before proceeding with the derivation of the filter. The advanced student

at his own option may omit those sections with which he is already familiar.

1970008111-008
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2. MATRICES

A matrix is a rectangular array of elements with certain mathematical

properties. Most of the properties which are important to us are listed below. [1]

If A is a matrix and aij is tile element in tht: i th row and jth column, then

2. 1 A : (aij) (i = 1..... m) , (j= 1..... n)

Addition

2.2 A + i3 = (aij+ bij)

Subtraction

2.3 A - B = (aij - bij)

Multiplication [c_ a scalar)

2.4 aA = Aa = (aaij)

Let

A = (aij) I i = 1, .... m
!

i j=l ..... nB = (bjk) k = 1..... p
\

Then

Also

2.6 (AB)C = A(BC) (associative)

2.7 AB ¢ BA (not commutative unless A and B are both diagonal

matrices)

1970008111-009
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Identity

={lo (ili¢=J)j)
Z. 8 I = (6ij) 6ij

2. 9 AI = IA = A

Zero

A = # -_ every aij = 0 and

2. I0 AB = BA = _ (B _ 9)

7 ransPese

The transpose of A is written A T .

2. 11 A = (aij)_---_(aji) = A T

Symmetric

2. IZ A A T
= _ aij = aji

Skew - symmetric

2.13 A -A T
= _ aij = -aji -, aii- 0

Inverse

2. 14 B = A'I_-_ AB = BA = I

_" also

1Z. 15 (AC) "I = C'IA "I

and

_. 16 (AT) "l = (A'I) T = A "T

1970008111-010
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Partitioning (an example)

Let

A = (aij), B = (bij) {i,j= 1....,n)
(m < n)

All = (aij),BII = (bij) (i,j= 1,...,m)

A =FAll Alp.l ' B =FBII BI2_

LAzl AZZJ LBzl BZZJ

Then

2.17 A+B= FAIl + BII AI2 + BI21A21 + B21 A22 + B22

%

0 There are several ways of formulating the inverse of a partitioned symmetric

_ matrix. The way su ,gested here ca_ be proved easily. [ 1 ]

Let

C.

A A T T = AZ= --_ AIZ 1

!
and

T _B 2A'I = B"*BI2 I

1970008111-011
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Then

IAII AI2] -I IBII BI2 1'.'_L_5_...jL°_=....
where

1"20 ]311 ii AI2A22AI2

-I

2.22 BI2 = _BIIAI2A22

-tT _Bzz A Al l2.23 BIZ =

?

1970008111-012
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3. VECTORS

^ A. ^
Let i, j, k be unit basis vectors in an orthogonal inertial frame. Then a

position vector may be expressed
i

- 0 ^ ^
3.1 r = ix+ jy + kz

or equivalently

[:j
Since we are using matrix notation throughout, it is convenient to omit the

inertial basis vectors and express the vector as the ordered column of its com-
ponents. Then

m33 acolumnvecto
UJ

and

--T
3.4 r = [x, y, z] , a row vector.

¢

Addition

. . I

: 3.5 ¥I + _'2 = Xl x2 Xl + x2

Yl + Y2 = Yl + Y2

" Zl z 2 z I + z z

,Dot product

-- -- -T-- F " = XlX2 + YlY2 + zlz2
3.6 rl " r2 = rlr2 = [Xl' Yl' Zl] x2

7 (a scalar)zz
t

1970008111-013
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i

Cross product

Let

--T -T
3.7 r = [x, y, z] ; v : [£, _, _]

Then by the definition of vector analysis

_.__; ___1r_ ]
= i J k _ -z_

x_j Fxx_
4" ;' I Lxy yk

With every 3-dimensional vector, _, there is associated a skew-symmetric

matrix, r, as follows:

rl r o]
3.9 _ = x _-_ 0 -z y = r [2]

L:oz y x

Now the cross-product can be expressed

' 0 - z x

" - x Lxy yxj

and the result of 3.10 is the same as 3.8.

! The following equivalencies can all be proved easily using 3.6 and 3.10. [2]

3. ll rV = -vr

3. lZ _'x (Ex _)_-_ r r v

3.13 =rv-vr

1970008111-014
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m

3. 14 (r x v) x r+--_(_ - _)r = _--rvr

3. 15 w • r x v_-+w rv

In this manner any combination of dot and cross products is equivalent to a

product of skew-symmetric matrices and vectors.

Rotating frame s

Although we can omit the basis vectors of the inertial frame, it may be

necessary to express the basis vectors of a rotating frame. Let

_T

3. 16 PR = [Pl P2 P3] be a vector expressed relative to a rotating frame,

and

--T

Pl be the same vector expressed in the inertial frame.

A A A

Also let [e 1 e Z e3] be the unit basis vectors in the rotating frame. Each
^

e i can be expressed in the inertial frame, e.g.,

^T

3. 17 e 1 = [elx ely elz ]

and

4"

A A A [" _--

3.18 [e I ez e3]= elx ezx e3x I T

t
[elz ezz

'-' Then
#

. ^ ^ P T

3.20 "pi= T'_R

f

1970008111-015
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State vectors

Up to here we have been discussing vectors which can be plotted in Cartesian

3-space, but abstractly a vector can have many more elements than three. The

trajectory parameters to be estimated, for example, are expressed as an ordered

column of functionally independent basis elements, called the state vector, S.

X"

3.21 S = y : [r'l (by partitioning)

LvJZ

k

(Note: For notational convenience later on the bar over S and certain

other vectors is omitted. )

The basis elements of S are chosen so that they are functionally indepen-

dent, e.g.,

_Y=0, _x = 0 , etc.
bx b_

This choice results in more convenient formulations. If there are more

trajectory parameters to be estimated, then the corresponding basis elements

are adjoined to S, and the dimension of S is increased accordingly.

Observation vectors

Each element of the computed observation vector is a function of the basis

elements of S, i.e., the trajectory parameters. Consider the vector modeling

: three measurements at time ti:

#

I 3.-.
i Here each _ij is a scalar function of the trajectory parameters, i.e.,

3.23 ,8i = 8 (Si) (Si -= St i) i

t
i

1970008111-016
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Magnitude of a vector (example)

where

--T
r = Ix y z]

Unit vector (examples)

^ _ r
3.25 r = -r------r=--

Ir| r

If

e= _rv

then

^ rv
3.26 e ----

17vl

Dyadic (example)

3.27 rr = x [x y z] = x z xy xz
2

y xv y yz

z x yz z

• Note that the determinant of 3.27 is zero, and the matrix has no inverse.

Quadratic form

Let A be an n x n symmetric matrix of constants and u be an n x 1 vector

of variable elements. Then the scalar function of elements of _,

I
3.28 _0= _TAu --,

1970008111-017
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is a quadratic form. If %o> 0 for all _, then both %o and A are said to be posi-

tive definite. If %oz 0 for all _, then both %o and A are said to be positive s6mi-

definite.

1970008111-018



_O

o_°_Introductioi_ to Trajectory I_stimation H69-0009-R

IBM °_ _" RTCC Mathematical .Report
PAGE 13

4. PROBLEMS

0c=2

C omput e:

(a) A + B (g) A(BC)

(b) A - B (h) (AB)C

(c)aA (i)Az
(d) Ba (j) IA

(e) AB

(f) BA (k) A T

4• Z (a) Give an example of a symmetric matrix•

(b) Give an example of a skew-symmetric matrix.

Let

[:

Then

Compute AB using this partition and compare the result with 4. le.

[: ],o

1970008111-019
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h h ^

Compute (without using i, j, k):

(a) r v (f) f_T

(b) r I" (g) _.T ?

(c) ITI : r (h) rv
*

(d) r (i) (_xT) xT

(e) rT_ (J) Isl,where sT= [?T TT]

4. 5 If

--T
r --[x y _]

and

 -I12:]
= a 0 0

0 b z

0 0 Z

Give an interpretation of the equation

--T
r _?=I.

i

1970008111-020
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5. PARTIAL DERIVATIVES

This section shows some convenient methods of differentiating scalars and

vectors which are expressed as functions of vectors and matrices. The rules

are simple and often will be demonstrated by an example rather than defined.

Let

5. l cp= a scalar

5,2 sT-[?T, _ T]

--T
5.3 r =-Ix, y, z]

--T
5.4 v = [£, _, _.]

Derivative of a scalar

Clearly

T
q_=cp

By definition the derivative of _0 with respect to several variables is a row

vector, e.g.,

87 _x' _y' _z

Then is a column, and by definition

! T T

t
Derivative of a vector!

i The partial derivative of a vector with respect to several variables is a

matrix. Let

i _Tro L[xO'i = YO' ZoJ]

J
1

1970008111-021
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and

=7(70)

Then

_ "_x 5x 5x

5.7 _ = 5x 0 5Yo 5Zo

__y_ __L Am_
5x0 5Y0 5z0

_z bz _z

_Xo _Yo 5Zo

Another example:

w:[;]
where

The partial derivative of a matrix with respect to one variable is a matrix.

5.9 A = II 12 1 _'x = _al I

_azl azzJ _azl _azz
_x _ J

1970008111-022
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The derivative of a matrix with respect to sevei'al variables can be expressed

i,: t_nsor notation. We are able to avoid this type of derivative and use nlatrix

notation throughout.

Derivative of the dot prodDic__tt

The dot product is a scalar; so the delivative is a row vecLor. (5. 5) Let

u, v, w be three vectors. Recall

_T_ _T_
U V= V U .

Then

_Tv) E_av v _u
5.i0 aE - a--_+ -_

It follows that

_(__T_) 2_Tu
5.11

: Anotker example: (5.Z, 5.3, 5.4)

_r r _

a_TT) _Tav + v ar
_S _S _S

= _TT[@, I] + vT[l, ¢]

5.1Z : [vT, _ T]

Here we took advantage of partitioning, i.e}. ',

' b
i aT a¥ a_"

a-'_"= ' = [I, ¢] , etc.

Derivative of a quadratic form

i The quadl'atic form is a scalar; so the derivative is a row vector.
! ,

i i
t !

1970008111-023
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Let _ be a symmetric matrix of constants, and

_T _T
%0-v _=u fl_

Then

_T _T
5.13 _ =.v ____ + u n__Z

_S 5S _S

Let _ be (6 x 6) and %o---sT_s, then

5_p : zsTn__SS: 2sTni = 2sTfl
_S _S

_T
Or let flbe (3 x 3) and %0= r fl'_,then

:zTTa__!: 2_Ta[I,¢]5S _S

Derivative of the product of a scMar and vector

Note that the product is commutative.

Then

_S : _S + _S

Another example:

: ^ ii_ Find _

f ^

_S _S _S _S

!

1970008111-024
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^

5.15 a-o- z- pp --as : Tpl as

And taking the transpose of 5. 15

^^T5.16 __2_.= i ___ z-_as 1oi as

Derivative of the cross product

Recall r xv_--_rv= -vr (3.11)

Then

) _5. 17 a r_ _ rat var- _ _ _--
aS - a_ a--g = r[¢, I]- vEZ, ¢] = [-v, r]

Derivative of _ x (_ x _)+--_w r v

wry = -wvr = -(rv - vr)_ (3.11 - 14)

Then

5 18 a v) _ wrav wvar rvaw vraw
• as a-'g- a--g- a-g-+ a-g-

Let w = r , then

a(wrv) _ rra_ rvar _ _ ar
• as a-g- a-g+ [_7 - r v] gg
/-

• = rr[$, I] - rv[I, t_] + [vr - rv] [I, ¢]

t
}' 5.19 a(rrv) = _ _ _aS [vr- Zrv, rr]
#

i J
i

1

1970008111-025
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__Z ,__,_
Derivative of w r v

--T_-- --T_-- --T_ --
W rv = -W vr = -v rw

T_ wT_br_.0 _-_-;-- _-_-_ - ___v rb__ww
' bS bS bS bS

The gradient of a scalar

From vector analysis

A A -___ T

by

_az.

The gradient of a vector

From vector analysis

1970008111-026
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The gradient operator of matrix calculus

, Some authors use this notation. We explain its use, but we shall not use it
_T

further. Let x = Ix l, x 2 ..... Xn] " Then

-_-1
!

5.z3 _-= _x--_l E3,4_

8xz [

• !

and

a

_T 8VT

x 8x 1

8_T

8x z

8VT

8x n

Suppose we take the gradient of _T with respect to 7, then
f m

• _xl
i

J
I

1970008111-027
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and

-_ ] _"5.24 vvT : _x Ivx Vy Vz] = bY

by

b

a_z

Note that V_ T of 5.Z4 is equivalent to the V_ of 5.ZZ. By either of the above

definitions the gradient is equivalent to a partial derivative, and from now on we

shall use the partial derivative notation.

Chain rule {example)

If ¥='f(_') and _=g(W), then

5.25 =

E

1970008111-028
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Then from 5.25 it follows that

5. Z6 = I

Summary of rules for differentiation

(a) _ isarow vector.
OO

bw

(b) _- is a matrix.

_T _T(c) u aV v a_"= a-W+ a--_

3 (vTfl_) VT Q35 _T fiT _V
(e) a_ = a-_+ a-'_

(and fl= QT if symmetric)

_T___

(f) For expressions such as r uvw etc., find equal expressions so that

! each element of the expression is permuted to a vector on the right.

Take the sum of £hese with each right-hand element differentiated.

Ig) _'_ _'_ = a-"g

_, (h) If A and B are matrices, then

d.. £B AB--_Am - +dt

%

, I
t

I

1970008111-029
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5. Z7 Problems

Define

=R -7

• m m

p =V-v

R and V are functionally independent of S.

:l is the vector of trajectory parameters of the CSM.

Then

9 = _-TP" is a range measurement from the CSM ---+ LM, and d p_dt

AT-is a range-rate measurement, where = p p

(a) Find _-_ ans. p aiY AT= __= -p , ¢bS bS

(b) Show that dO ^T'_.
dt =P P

t -T ^
:_ P D..= +

. _S bS bS

5

1970008111-ogo
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(d)

(e) Find _-_(dt = d'[

Parts (c), (d), and (e) all have the same answer (of course) as follows:

[ilI^^_ ]-0,-;
In parts (f), (g), and (h) let

^ ^ ^ _'xV ^ (_x_) x¥

el : r, e3 17x_ 1 eg [I_'xV) xy I

^

^^TI_)el t I - rr j[l, (_]
(f) Show that B--S- = "r-

^

" _e3 [ ^ aT] ._:: B=='_== e3 - e3 e3 J '

7

;) ^

(h) --_- : e2 = eze [2rv - vr, -rr]{

In parts (i)through (n) let

z_o: (g- s)Tr'llg-S)

1970008111-031
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where S is a constant vector and F-1 .zs a symmetric matrix of constants (6 x 6)

and partitioned as

F-1 = I Gll G121 where each Gij is (3 x3).

1Z G22J

Show that

(i) _°=-(S-s)ra_ IGIll

LoT J
av l/

Lo_.J

= -(E- slTr -_
(k) aS

A ^

A ^ _A _A

Note that r xv_rv = -vr
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Show that

[^( ^( ,7
Hint: Use the proved formula

^

^AT] b5_u _. i l- uu j_s u

What are the dimensions of the matrix answer?

_s -7- '

What are the dimensions of the matrix answer ?

Q

i

i
I
i
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6. TAYLOR SERIES

(:or,_plet_discussions of the Taylor series can be found in almost any text

,,,_,dvanced calculus. The only purpose here is to show how to express the

[±rst-order Taylor series in matrix form. [_]

One dependent and two independent variables

In Section 3 the superscript carat was used to denote a unit vector. In this

,ection it is used to denote a close estimate of a scalar or vector, as follows.

Let y be a scalar function of two scalar variables

y = y(x I, x2)

A h

and let x I and x2 be close approximations of xI and x2 so that a linear approxi-
h

_nation, y, of y is valid:

^ Y(^ ^Z)y= x 1, x

A

'then a first-order expansion of y about y is

(^ ) )' ^ by x -x I + xz
6. I Y = Y + bx I I bxz - xz

Define

2 LX2j
Then 6.1 can be written
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Three dependent and three independent variables

Let

Yi = Yi(Xl' x2' x3 ) (i = 1 ..... 3)

h eh h h \

Yi = y;kxl' x2' x3)
^

Yi - Yi is small enough to allow linear approximations. Then

^ _Yi ^ 5Yi A _Yi ^

6.3 yi=Yi + _-_i (Xl-Xl) + _xz (xz-xz) + _x3(X3 -x3)

Define

y,Xljx2< Y3

Then 6.3 can be written

^ bY ^

6.4 Y =Y+ _--_(X-X)

n dependent and n independent variables

_! Yi = Yi(Xl' xz'''''Xn ) (i= l,...,n)

• ^ (_^ ^)Yi = Yi 1' Xz'''''Xn

!'
A

Yi " Yi is small. Then

; ^ _Yi ^ _Yi / ^

_ _=,_+_ (_.x_)++_tx.xo)

!
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Define

-;1y= y , X= x I

JnJ x-- n_

Then 6. 5 can be written the same as 6.4

^ _Y ^

6.6 Y =Y+ _-_(X- X)

This extension to n variables is apparent without a formal proof. The

saving in notation is obvious when 6.6 is compared to 6.5. Another necessary

assumption is that the functions are continuous in the region of the expansion

_Y

: and that _-_ exists.
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7. NEWTONWS METHOD

Newton's method of successive linear approximations can be used to get

the solution to n non-linear equations in n unknowns. There is a lot of theory

written about this method, particularly in connection with convergence pro-

perties [13]. Although this is a very worthwhile subject to study, for our
purpose it is sufficient just to demonstrate the method and comment on the

cor_vergence criteria.

One equation and one unknown

Let y be some non-linear function of x.

7. 1 y = y(x)

^
and there exists some value, x, of x such that

A ^

7.2 y = y(x) = 0

^
Then find x.

Let x be a close approximation of x such that x - x is small and linear
^

approximations are valid. Express y as a first-order Taylor series expansion
(6. I).

^ .- dy ^ ,., "" (x)7.3 y = y + -- (x - x) = 0 where y = y

d_' and dy = _,, = y, (._.)
dx

Then

7.4 x=x -

i ' Equation 7.4 can be re-written for iteration, where subscript, n, indicates
! th
, the n iteration.

dx

7.5 Xn+l - Xn - _ Yn
dYn

!
!
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If convergence criteria are satisfied after n iterations, we consider that

^

X=X
n

The manner of _onvergence by this succession of linear approximations is
illustrated in Figt re ?. 1.

Y

Yl"

I
y : f(x)

I
I
I

/ I/
Yz / I

I/ I
Y3

o I
x 4 x 3 x 2 x 1

^

X 4 _,X

Figure 7. I

n equations and n unknowns

To illustrate this we shall solve a problem which will confront us later on.

"; Consider the following system of n non-linear equations in n unknowns.

' ^

7.6 _(S) = ¢

Find _.

By our notation {( ) = {, and S is an n-element state vector.

7.7 S T : Ix l,...,xn]
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or equivalently

_i ] _l(Xl ..... Xn)
I

7.9 : =1. I"

%_, L{n(Xl..... xn)

Let S be a close first approximation of S such that S --S is small and
A

linear approximations are valid. Then an approximation of _ is

7.10 _ = ® + ---(_ - S) = _ (6.6)

where _ : _(S)

A

Solving for S

7.1t s =g -

Assume that 8--_is non-singular
8S

Since _ is a closer approximation to the solution than _ in 7. II, we can
: rewrite 7. 11 for iteration.

7. lZ Sn+ I = S /8._ _-I
-

. n \OOn] n '¢
:%

}, If convergence occurs after n iterations, consider that

' ^
S=S

_- n
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A theory exists [13] which shows that Newton's method will converge under

certain conditions, but it is difficult and Lime consuming to determine if these
conditions are met. For our purpose it is sufficient to assume that the condi-

tions are satisfied, and the method will converge. Computer programming will
stop the process in occasional cases of non-convergence.
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8. PROBLEMS

" 8. I If a, b, c, d are scalars, show that

[::]' :]
8. Z Consider the system of equations

Z
y=x

i y=x
I

l]si_k__initialconditions as given below, perform the first iteration toward a

solution by Newton's method, i.e. , find S I"

Hint:

Sn : [_"n]

LYnJ

['1_n = Xn - Yn

Xn Yn

= - _o (7. Iz)

(a) SO =
4

_. . (b) = , 1 In each case findS 1.

,: the results ?
t
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9. FURTHER PROPERTIES OF SYMMETRIC MATRICES

Some properties of positive definite and semi-definite matrices are dis-

cussed. The proofs of the statements are not difficult and they are available

in standard tests. [ I ,

Let

be a vector (n x 1)

F a symmetric matrix (n x n)

%o: _TFK

Then if%0> 0 for all _ # 0, 1_ is said to be positive definite, written

9.1 F>¢

If %0> 0 for all _ _ 0, I" is said to be positive semi-definite, written

9.Z F>_

Then

9.3 F>#---_F _¢

Also itis true that

94 r >_--. Irl >o
and

-1
9.5 P > _ --_ F exists.

Let k i be an eigenvalue of F.

9.6 1-"> I_ --_ ki > 0
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9. 7 F _ ¢---_ki > 0

Also

9.7A F >#+--_F-i >¢

Let

A be (n x p) of rank r, and

> ¢ (n x n) and symn_.etric.

Then the following are true:

9.8 ATA _ O (n< p)

9.9 ATA _ ¢ (r < p < n)

9. i0 ATA > _ (r = p < n)

9. II ATriA > ¢ (n < p)

9. 12 ATriA > ¢ (r < p < n)

9. 13 ATf2A > ¢ (r = p < n)

All of these (9.8 - 13) are symmetric. Equation 3.27 is an example of 9.8.

In derivations which follow it is necessary to compute forms such as (AT_A) "I

and also to be assured that AT_A > ¢. Line 9.13 shows that the necessary and

sufficient condition is (r = p _ n).

* 9. 14 Problem

'- 0

Let

' t
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-I Z -I -I Z

0 -I 2

(a) Compute lal, Irl, IBI .

(b) From the answers to (a) comment on the existence of a "l, F -1 B -I

(c) Compute [AFAT] "1 if it exists. Classify it according to 9.11, 9.1Z,
or 9.13.

(d) Compute [BrBT] -1 if it exists. Classify as in (c).

(e) Compute [A Tf_A] -I if it exists. Classify as in (c).

i

[

b
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10. MINIMIZATION OF A QUADRATIC FORM

AND SOLUTION BY NEWTON'S METHOD

This method will be used later on in deriving the Bayes filter.

Let

10. i ST = [x I, x2..... Xp]

T
I0.2 a = [a I, c_2..... a n ]

I0.3 a --a(S) , i.e.,

10.4 ai = &i(Xl, xz, .... x )P

I0.5 R > @ and a symmetric matrix of constants (n x n).

Then from 10.5 it follows that

-1
10.6 R > # and symmetric.

Consider the quadratic form,

I0 7 Z_o T R- I

' where

1o. 8 _p=_(s).
+-

:' Find _, the value of S such that the scalar £0 is a minimun_,

, 10.9 %0min = _0(_)

We use the classical method.
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Let S 1 be the solution of _S = ¢ " Then ¢P(S1) is an extremum. If in
2

addition _ > _ then ¢P(Sl)is a minimum and S I =
_S 2 '

_¢pT _aT R- 1
10.10 _ = _S = _---_ a

10._1 _ = {(s)

and

10.z2 _=_ )=¢

The solution to 10.12 will render ¢p an extremum. Disregard second order

partials in taking the second derivative:

10.13 _--_= _-£aTR-1_--_
_S _S _S

Assume that _ is (n x p) of rank r and (r =p _n) . Then by 9. 13 _> _ ,

assuring that the extre,num is a minimum and (_) "1 exists.

Assume that 10.12 is a system of non-linear equations and S' is a close first
^

approximation to the solution, S . Then by 7. II

-I

..i io. 15 _:g. R"l_

L_ _j _
where

_ ~: a(s). 4_

t :2
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or iteratively as in 7. 12

F3a'T R-I _ _ T I

10.16 Sn+l = Sn - L_-_n _-'_-n R- n

|
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11. THE STATE TRANSITION MATRIX

Let sT1 = [xi' Yi' zi' xi' Yi' zi] be the true value of the state vector at

time t..
1

1 ' Yi' zi' Yi' be a close estimate of $1 such that (S - S)i

is small and linear approximations are valid. It is also true that the state vector

at time t. is a function of the state vector at time t. , written
J 1

ll.l S = S.(S.)
j j 1

Then using a first-order Taylor series expansion as in 6.6

bS.

ll.Z _. =s. + J sij j _-E.( -si)
1

or

bS.

t l. 3 ('S - S)j J (S"= aS. - s)i
l

bS.

The derivative, _ , is the transformation matrix which relates a small
bS i

deviation in the state vector at time t. to a small deviation in the state vector
J

at time t.. This is called the state transition matrix. In expanded notation, the

; s_ate transition matrix relating the deviatio_ vector at time t to time to is written

i:

i
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-_x _x _x _x _x _x --

bXo _Yo bZo b_O _Yo _0

_y __z_ _ _y _y
_Xo bYo bZo b_:O _Yo _0

_z _z _z _z _z bz

bS bXo _Yo bZo _0 b_rO _o
11.4

bx 0 bY 0 bz 0 b_ 0 %Y0 b_. 0

bx 0 bY 0 bz 0 b& 0 bY 0 b_,0

bx 0 bY 0 bz 0 b_0 bY 0 b_.0

This idea is readily extended to state vectors of any dimension.

1I.5 Problem (A)
(3, 4)

Given : Y

I
(a) An x-y cartesian frame I

(b) Radar station at (0,0) I

?

4"

(d) A priori estimate of the 4 =y

location of an object is

_ X

x=3
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(e) ct = [ 0] is the true angle and range of the object, i.e., c_ = c_(S)

L ]P

,g,,: [,:oI
(h} _ = (I(S')

Find:

(a) A better estimate of S.

Solution:

We shall do this by the method of least squares, i. e , we shall find the

value of S which minimizes the sum of the squares of the residuals.

Residuals are (e i - e) and (Pi - p)" Do one iteration only of Newton's

method with S as the first estimate. The sum of squares of residuals

is written as a quadratic form:

T T

as _s [(% " =) + (% - =)]

_S _S as

1970008111-050



il IBM
Introduction to Trajectory Estimation H69-0009-R

DATE 5/9/69

RTEC Mathematical Report

PAGE 45

Then

s=s- --z (lO.14)
/

Assume that \_/ exists, then

S=S+

^ ^ N

Now go ahead and compute the first iteration, i.e., compute S = $(S) where

S= 3

4

Problem (B)

Do the second iteration.

j.

£
.<

i °
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12. STATISTICAL THEORY

This section is prepared for those who need to understand trajectory esti-

mation but lack a foundation in statisticaltheory. Such a scant treatment as

this is only a shortcut to understanding _he main subject and certainly not a

substitute for formal study. For the pre_iously uninitiated, statisticaltheory

provides a new realm for mathematical imagination, where ideas may be beau-

tifuland apparently simple, yet elusive• The student, however, should not be

deluded by this apparent simplicity into dismissing the subject lightly as trivial.

Tenacious pondering of the new notions must ]eadto f_elJn,gs of frustration and

inadequacy, fellowed by awareness and respect, and eventually appreciation and

even astonishment -- if he gets the right answer!

First consider a simple problem• Suppose we have three urns, each con-

taining an infinite number of balls of different colors, assorted as follows:

I II III

•1 blue .2 red .1 violet

•2 red ._. yellow .3 pink

•3 yellow •6 blue .5 red

•4 green .1 black

Let the first letter of the color denote the color, i.e., B _ blue, etc.

In each of the following selections one ball will be chosen at random from

urn I, urn II, and urn IIIin that order•

P is the probability of making a selection.

Then

P(R, B, P) = (.2)(.6)(.3) = .036

PiR, R, R) = (.2)(.2)(.5) = .02

P(G, Y, V) = (.4)(.2)(.I) = 008 _

¢

:;, W
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To generalize this idea consider a set of p urns, U i, each containing an

• infinitenumber of named ele_nents. One random sample, 0_i, is taken from

each U.. And n. is the decimal part of U. which is named c_.. Then we have
1 1 1 1

{Ui} (i= 1..... p)

12. 1 P((_l..... _p) = nl "'' np

Suppose each n. is a function of a set of parameters, S, and we took the
i

sample {C_i] in order to find the most pz, bable value of S.

n. = n.(S)
I i

^

Then we would try to find the solution, S, which would maximize

P(0_I,...,(_p). This is the elementary principal which we use in processing

radar measurements to get a better estimate of the state vector of a spacecraft.

So now we are just beginning to consider the problem of using radar mea-

surements to get a better estimate of trajectory parameters. Let each measure-
: ment be modeled as a scalar function of the state vector. Later this will be

extended to include vector functions, where several scalar measurements

can be the elements of a measurement vector• Each measurement can be

'. thought of as a random sample from an urn, one measurement only from

each urn. In the example above we listed the assortment of colored balls in

each urn. Analogous to this we need a way of listing the assortment of radar

_ measurement values in each "urn". The assumption bere is that the normal

density function as shown below is a valid representation of the "assortment".

A discussion of the normal density function for one random variable follows.

i Let "urn" U be the set of elements (scalar measurements) represented by

' all values along the a- axis in Figure 12.1. Partition U according to a parti-tion of the ¢t- axis into short intervals such as 6. Let one value on 6, say (_,

be the label attached to every value on 6. Then c_ is the value assigned to

every measurement represented by a point on 5. Let 8 be the mean value of
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i

i
all the elements of U. Finally, let the contents of U be distributed according

to the normal density function, f(a) (12.2), where the cross-hatched area

represents the decimal part of U labeled (_.

f,a)

f(&)- _ _ inflection pt.

- O0 "_'---- : _ QO

j _---8 _ OCt
0

Figure 12. 1

Before discussing this curve further let us define the statistical expectation

operator, E. If G, is distributed in accordance with f(a), and g(a) is continuous

almost everywhere on - co < _ < oo, then

(3O

12.3 the mean value of g(a) - E[g(ct)] = g(c_)fo,)da
," " CO

i Now return to Figure lZ. l. The curve is symmetric. Using either the gamma

function or a table of definite integrals it can be shown easily that

(a) f_3o fla)d0c = 1;_ OO

Loo af(a)da = $ , where 8 is the mean value of 0_.0 E(a) = co
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(c) E(_) =

(d) E(a-fl)=O

(e)E[(_-8)Z3=oz
a

where o_ is calledthe variance, and 0 a = is called the standard
deviation.

(f) Approximately 2/3 of all the measurements in U have values on

- on< a< _ +o a .

It is assumed that 6 << oC_ . Note that 6 arises from the limit of accuracy

in reading the measuring instrument. For example, if we measured distance
with a scale readable to the neardst tenth of a foot, we would have measure-

ments 5.3, 5.4, 5. 5, etc., but not 5.37. If the true measurement were 5.37

it would have the label 5.4. Thus in Figure 12. 1 any measurement falling on 6

should be labeled c_. The cross-hatched area is the probability of choosing a,

i.e.,

/a+ 1 5
lZ.4 P(a) =j_ 1 f(a)do_ f(o_)6

a-_-6

Note that the curve is completely determined by 8 and 0¢_. The standard

deviatior o a, determines the shape (fat or thin), and the mean value, 8, deter-

- mines the position along the a-axis.

Suppose n_w that we have p independent measurements, [ai] (i = 1, ..., p),

such that each measurement can be considered to be a sample from a separate

lturn, t!

a i e U i
J
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Then

11.6 P(c_i}_ f(_i)Si (IZ.4)

The joint probability is determined as in lZ. 1:

1Z.7 P(c_ 1.... ,ctp)_..f(c_l)51" ''f(O_p)6p = f(Ctl)'''f(Ctp)51'''6 p

Define

Iz.8 f(al,...,%)=f(ch)...f(C_p)

Since cci and uj are functionally independent (i ¢ j),

130 CO

I ""f "" :I '"I =Ig. 9 coC° f(c_I' ''" ,¢_p)dC_I do,p oo f(O_l)d_l co flO_p)d_p I

Then IZ. 8 is the multivariate normal density function and

_. Again due to functional independence ':

12. II E({_i)= $i ;

' i
5

&
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2
_ai (_= j)

12. 12 E[(a i - _i)(aj ,. _j)] = 0 (i # j)

Now we shall re-write equations 12.7 - 12. 12 in matrix form. Defir, ;

T
12. 13 a = [al,...,ap]

z Czlj

12. 14 R - OCZl."

¢ '

Then

1 11 I
lZ. 15 P(o_)_ (Z_.4plZlRIIIZ e×p -: (¢c- 13)TR-I(o; - _) 61"" 6p (12.7)

IZ.i(.fta)= I I i )TR"I 1(z_lPlZlRlll z exp "E (oc- _ lot- _) (IZ.8)

lZ.17 f._..[ f(:),_l.., db : i*-oo (12.9)

f .oo f ... 0% ClZ.is)IZ. t8 _.[g(cc)]-- oh' glcdf(°c)_!

IZ.19E(a)=_ (lZ. ll)

IZ.Z0 E[(_-_)(_-_)T]= R (Iz.lZ)

' The covariance matrix, R, i_ stilldiagonal and errr)rsin the measure-

ments, _i and (_j{i _ j),are said to be uncorrelated.

Consider a non-singular linear transformation, T, _uch that

12.21 _' : Ta
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T hen

IZ. ZZ R' = Er(o, ' - 6')(c_' - 13') T] = TE[(a - 6)(0. - 6)TIT T = TRT T

'fhe matrix, R I, is non-diagonal (except for particular choices of T), and

errors in the pseudomeasurements a i' and Ct; are said to be correlated. We
shall show that equations 12. 15 - 12.20 can be expressed in the new coordinate

system simply by inserting primes over the variables.

.,_...-_ (1 e

6 _'-_ 6'

12,23 R _ R '

g (_) .+___ g I(_,)

5 i _--> 5i'

Define

12.24 2¢p = (a - 6)TR'l(ct - 6)

This quadratic form is invariant under the transformation, as follows:

12.25 Zep = (a - 8)TR-I(ct - 6)

= (a- _)TTTT'TR'IT"IT(ct - 6)

= (0,' _')TR"I(¢_' - _') (12o21)

= 2¢p'

: The normal density fu; ction transforms as

12.26 f(o.) = 1 -_0
(z,)p/ZlRix/z e

ITI -_o (l!z.zz,xz.zs)
: (z,,.)p/Zle,ll/Z e

= ITIf(=')

g
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The differential hyper-volume of th_ definite integral transforms as

12.2zd l.-.d % = = ITI
r83

Combining 12, 26 and 12.27 gives

lZ. as f(_)d_l.., d_p : fC_'ld_{''" d%

Using 12.28 it can be shown that equations 12. 15 - 12.20 are expressed in

the new coordinate system simply by mapping the variables as in 12.23. Th_n

f(a_) is the multivariate normal density function for variables with corre;_ted

errors and P(a _) is the probabilitv of selecting the random vector, c__.

From here on measurement errors are considered uncorrelated; so the

measurement covariance matrix is diagonal. One exception is correlated

doppler measurement errors to be discussed later.

We have shown that the normal density function for p measurements with
correlated errors is

12.29 f(c_)= I { i , o _ }
!. (2g)p/2[R,[ 1/2 exp -_ (_ - _ )TR'-I(a - 13')

; Now we wish to express the normal density function for n trajectory!
parameters with correlated errors. Let

;_ S =Iill the mean (true) value of an n-parameter state vector
L n_l

g

!

i'

12.30 F = EllS - S)(S - S) T] the state covariance matrix
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If n = I, the normal density function is

12 31 f(x) - 1 exp _l/x - x (12.2)

X

Starting with 12.31 and repeating the procedure which led to 12.29, the

multivariate normal density function for the state vector is

12.32 f(S)= I I I I(2r0n/21_ I 1/2 exp -_ (S - s)T_-I{s - S)

Note that the state covariance matrix will seldom, if ever, be diagonal. It

can be diagonalized, but this is time consuming for large order matrices and is

_ot done. One thing more: For the purpose of deriving 12.3Z we should con-

sider that the transformation, T, {12.ZI) was orthogonal (TT T = I). Then the

elements of S will be functionally independent. This results in simpler mathe-

matical formulations. To emphasize this remember that the elements of C_were

assumed to be functionally independent, but the elements of c_t = T_ are not

functionally independent unless T -I = T T. Notation for the elements of 12.30 is

m m

2
1Z.33 I" = oN o--_ N ... ON N

x I XlX 2 XlX p

2

XlX 2 x 2 .
• t

• 2
0""-' "_ • " • {3",,-,

XlX xP P
m

2
The variances, _-_ , may be expressed

xi

! z _lZ.34 --
i 1 1 1
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The elements oN_ (i _ j) are called covariances. Rewrite 12.32
X.X.

1j

N

12.35 f(S)= 1 -_0

(z_)p/2lrl t/2 e

where

N N m

1Z.36 2_0= (S - s)TF l(s - S)

Abstractly, this (12o36) is the equatlo_ of a hyper-ellipsoid with p principal

axes. If F is diagonal, then the principal _es are aligned with the coordinate

axes, and the errors in the trajectory parameters are uncorrelated.

Now we are finally at the point where we can process a set of radar mea-

surements to get a better estimate of the state vector. Let

1Z.37 2cp = (_- _)TR-I(_ - _)

and rewrite 12. 15

12.38 P(a)_ (2_)p/ZiRll/2 e _°51 P

The a priori estimate of the state vector is S. The measurement vector is

_. We need to find the value of S which will make P{_) a maximum. All terms

in P{0_) are constants except _ = _(S). Obviously, P(c_) is a maximum when 2_0
^

is a minimum. So to get a better estimate of S, we find the value S which min-

imizes 2¢p. Review our thinking a moment. We can never know the true value

of the state vector; so our best assumption is that the true value equals the mean

value, S. Our current estimate of S is S. Our better estimate will be S. Now

. find 4. (See Section 10. )

12.39 gcp= (a- _)TR-I(a- 8)

IZ. 40 _ = _-_

T

. __ALR-I
_s = _s (_"_)
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T

12 41 a___ = _ _^b_-9--R-1 °'-qg- (disregarding 2nd order partials)• aS aS aS

^ ^

1Z.42 { = _(S)= ¢

iZ.43 _ = _(S)

^ N a_(_ ~12.44 _ = _ + -- - S) = ¢
as

\as/

• ,,otz.46 _=_'+ R-I a_-R- -_I
LaS as] as

or iteratively

V£ ]-'
1Z.47 Sn+ 1 = S + R "lab b827 R-I(_- 8n )

n LaSn _-__j asn

Since R is diagonal we can write IZ.47 as

• [ _; ,_3"__; 12.48 Sn+l : % + _ _ R; _--_--J i_l _--_"n R-I(@i - 8in ): i=l .= 1

where each (%i is a subvector of o_ and

_z.49R.,: zr%-_%_%-B_Zl_ •

This (lZ. 48) is a convenient formulation to program, since the procedure

is to measure a specified set of quantities at each time t.. For example,
1
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__ _ ]
OCi-- OCilI = range

Oci2I azimuth

_i3 I elevation t

OCi4 J range-rate] ti

as measured from a radar station at time t..
l

^ ^

If we converge after n iterations, then consider S = S. Now to find I',
n

^

express S as a function of S, using a first-order Taylor series as in 12.45

-I

_z_0 _--_- .'°-_.)_

l<)-'°()-'fT]#lZ. Sl = E L(_- s)(_- s)j : E E_ )

which can be reduced by 12.20 and 12.41 to

-I

' iZ.5Z £= _ = L_-S" _S]

Then 12.5Z is the new estimate of the state covariance matrix, computed as
^

a function of S.
1
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13. SEQUENTIAL ESTIMATION -- THE BAYES FILTER

So far we showed how to process a set of radar measurements to get a
better estimate of the state vector, and we found the state covariance matrix
associated with this estimate. This can be extended to fit the real situation

where batches of measurements are processed sequentially to estimate a state

vector changing with time. First review the propagation of small deviations of
the state vector _s in section 11.

Define

^

(S - S)i. the error in the best estimate at t.1

{S - S)j the error in the apriori estimate at t.j

r =E -S)lS-S)1 i

r =E -S)lS-S) TJ J

Then (t i < t j)

~ ._.^
z; 13. 1 (S - S)j = bS. (S - S)i and

: t3.z r. = ---2r i----Z- (tt 3)' J aS. aS. "; 1 1
¢
[

That is, the best estimates at t. are propagated to t., where they are
l J

a priori estimates, Let a* be a measurement vector.

• Substituting S for S, write 12.46:

=[a_* T *-1 at3_ "1^ as*T R*" I
13.3 (s-s) L_-Y--a _-_-J a-'Y- 1="_)*
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This substitution is valid, because S is any good first guess; and hopefully
the true value, S, would be a good fi:st guess (if not, we are in trouble}.

Equation 13.3 is a linear approximation of the error in the _¢tate vector
estimate at time, t, after processing measurement batch, as. Also

[^ b_'_T _ _- 1

13.4 F = _R bS J (12.52)

Partition (%$into two non-empty subvectors

_ [(_-B)(_-_)T]_-R
and

' [: 1R* = 1 ¢

R

_. Choose a time t3. < t, which is an appropriate time to process CC1. Then

k (since R is diagonal):

,: NJ ('"_)
Also 13.3 can be written

^ bSTR-I,13.8 (S- S)=L_--s- _T+_ a R[ - 8),+ -

1970008111-066



_o
o-_
o_ Introductionto Trajectory Estimation H69-0009-R

'IBMc_ DATE 5/9/69
RTCC Mathematical Report

PAGE 60

where

T bsT aBlT bB aS. _ST aS.
a_1 -la_l __2_ -I I j __A_j_-I_.2_=_-I (t3 Z, 13 7)

13.9 B--s--RIa--S--= aS b_. R1 a--S.-,a-S--= 8S j aS ' '
J J

.
13.I0 _--_--RII(o_- B)I = __2_aS__, -I --'L_'Iasj ^_--g--RI (_ - B)I = (S- S)j (13.6)

J

:.__z_JrI _ 1_as as _T -s)jJ

: _-i(_ _s) (13.I, 13.z)

Substitute 13.9, 13.10into 13.8:

^ aBT -I
13.11 (S -S) = ._'I+B-_R _'l(g-S)+ BBTR-I(cc- 8)aS

where the a priori _ and'S come from processing past measurements and
• cc is the next measurement vector to be processed. Note that 13.3 and 13. 11

are equal (if first order approximations are valid), although 13.3 was obtained

by processing C_'_at t, and 13. 11 is from processing al at t. and 0_ at t.^ J
This can be extended by induction to show that the final (S - S) (after processing
all of ¢x'*) is independent of the batching partition and times of processing. This
idea is emphasized by an algebraic proof in the final section. Since R is diago-
nal, 13.11 can be written

^ asT . aS .l(_.s)+Ea__g_p,_1(=.is) (IZ.4s)
1 1

where each a. is a subvector of c_ such that all elements of a. were measured
1 1 :

at t i. This is the form of the Bayes sequential filter used by the RTCC, MSC _

for Apollo trajectory determination. ,_i
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Also

^ [_-i _ R-It -J_i (134, t3 lZ)
13.13 F= + E. _ _S-I " "

1

which is the error matrix associated with the estimate in 13. lZ.
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14. FORMULATION OF MEASUREMENTS

T
Consider a vector, Ix y z] , expressed ina right-hand, rectangular

frame. If this frame is rotated positively through angle e about the x-axis,

then the same vector is expressed as Ix' y' z']T in the rotated frame.

[:1[ ][:1
x 1 0 0 x

14.1 = 0 cos 8 sin

0 -sin 8 cos

If the positive rotation through angle 8 is about the y-axis, then

14.2 : 0 1 0

sin 8 0 cos

If the ,otation is about the z-axis, then

[cossineo][i]14.3 : -sin 8 cos 8 0

0 0 1

Now we can formulate some representative radar measurements. Some of
these measurements are now in the Apollo Trajectory Estimation (ATE) program,

while others are just good possibilities for future programs. Also, some of the
fine points of the formulations are omifted.

Azimuth and elevation measurements are expressed in a topocentric,
(x', y', z'), frame centered at the radar station. The x'-axis points east; the

! y '-axis, north; the z '-axis, to the zenith.

[:]
I
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14.6 _' = Fx'7 topocentric position of the spacecraft [I0]

Lz '.j

14.7 _0 latitude of radar station

14.8 8 right ascension of radar station meridian

14.9 p range of spacecraft from r _ar station

The position of tne spacecraft in the £opocentric frame is

I_.1o _'=T(_-?) [10]
s

where

o cos(90-_olsin (90-_o)/-sin (0+901 cos (0+90) 0
0 -sin (90-_0) cos (90-%0)_] 0 I

-sin cpcos (9 -sin q)sin O cos [I0]

cos _0cos 8 cos cpsin 8 sin

The azimuth measurement, A. is

B

= [10]
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The elevation measurement, E, is

14. 14 E = tan tan -1
Z i iZ iZ [I0]

p -z x +y

The range measurement, p, is

= [ _ )Z )Z ] 1/2 [i0]14. 15 p (x x + (Y - Ys + (z - z )ZS S

Now consider some measurements taken from the I,M on the surface of the

moon to the CSM in orbit.

Define

11rrxG1rrcosco:lIlL:JmoonSelen°rPhicP°iti°n°onthe11YG cos ¢p sm

z G sm ¢p117rxLselenocentricinertialposiionotheLonthemoonllJ
l JYLz L

14. 18 L libration matrix, such that [ 1 1]

14. 19 r'L = LTr'G (LTL : I) [II] _

14. ZO _C = [Xc] selenocentric positionofCSMinorbit [II]

h JYCzC
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14.2.1 r--CL= p = r C -_'L=FXcL1 [11]
/ |

LZcLJ

Then the following three measurements are from the LM to the CSM.

The pseudomeasurement D in [11] is

14.22 D= sin-l(ZcL_ [11]

The pseudomeasurement HA in [11] is

14.23 HA=tan -1 (YcL_ [11]
\xCL /

The range measurement is

14.z4101= _

_. Now consider some measurements between the CSM and LM when they are
: both in orbit.

i
Define

14. Z5 S T = Ix y z _ _ _.] inertial state vector of the CSM

{ 14.26 L T = [x L YL ZL XL YL ;L] inertial state vector of the LM (not the
r L and L of 14.17 and 14.18)

• Then

[;] r:,.l14. Z7 S = , L =

LrLJ
!
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14.28 P-= r'L -_"

14.29 P _ r L - r

The range measurement is

14.30 p: -_

The range-rate measurement is

14.31 d_.p_p= d_ _-_
dt dt ,

The space-craft coordinate system centered in the CSM is as follows:

^ ¥
14.32 el =

^ rxv

14.33 e 3 = I_xvl

^ (_"x _)x _"
14.34 eZ =

I(7xv)x71

Then direction cosines from the CSM to the ],M are

-- ^TA

14.35 8 = S1 = p eli

aT^

Bz p e21
AT^
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Now we shall formulate the doppler measurement as used in the ATE pro-

gram. Another formulation will be given later when discussing the Kalman fil-

ter powered flight processor. See Figure 14.1. [10]

' vehicle .. I.

,_///_ _-, t
-_ /'/ path of signal

Tx// PZ

c = speed of light R r

; Figure 14. I
PZ

. 14.36 t= t ---
r c

a. 14.37 P2 = ITM -?r(tr)l
$

: Initialize with t = t and then iterate using 14.36 and 14.37 to find PZ'r

: P1
14.38 t = t ---

t c

14.39 Pl = ITM - _t(tt )l'

! Initialize with t t t and then iterate using 14.38 and 14.39 to findi : p 1"
i

i

1
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Define

c speed of light

T counting interval

t is the doppler time tag (at the end of the counting interval) and isr
the time the signal is received at the ceiving station

f doppler frequency

0j3 = 10 6 Hertz = 10 6 cps, a bias constant

b a bias which can be estimated

the transmitting frequency

004 a constant for signal adjustment

r - rr(tr)

14.41 P3 = r t - - tr r c

14.43 "Pl = _ tr" 'r - - r " 'r c

Then the computed measurement is "

•4_
14.44 f = 1_3 + b) +--[(p + p4 ) - (Pl + P2 )] [10] _c'r 3

i

[
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Note that

P3 " PI P4 - PZ

k _4,r 3 'r

and

w4%)

3+ P4] [10]

It should be understood that a doppler measurement is not a discrete obser-

vation at a discrete time, but rather a counting process over a time interval _.

For mathematical convenience, however, we create an average frequency change

over the counting interval, affix an average time, and treat this pseudomeasure-

ment as a discrete observation. The pseudomeasurement corresponding to 14.44
is

K(tr) - K(t r - _)
14.46 f =

T

where K(tr) is the doppler count at t . The average time t. associatedr

with f is the vehicle time for an imaginary signal received at the counting

14.47 t, = t ----r Z
C

where
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15. PARTIAL DERIVATIVES OF MEASUREMENTS

Some of the following derivatives are used in the Apollo trajectory pro-
cessor; others are just typical examples.

-l/x'_ {14 13)
15.1A:tan \7/

bA

Find b--S

_A _A 58'
_-_'=_-_ _s

:5z _A 1 rl.:.r _x' x' _ /.l._-[_s'

l+ \7]

" ][ * ]t s=z ,Z ,0,0,0,0,0 + o,-7, o, 0,0, o :g-
p -z y

-1 _S I

- z ,z ['Y" x', o, o, o, o]
p -z

-_', _'7
t

15.3 _:

_s _, _,
_r br

m

-sin 0 cos 0 0 0 0 0 '

-sin _0cos e -sin _0sin 0 cos ¢p 0 0 0
g

cos ¢pcos {} cos _0 sin 0 sin _0 0 0 0

0 0 0 -sin eO cos {} 0

0 0 0 -sin_ocos 8 -sin_0sin 8 coscp

0 0 0 cos _0cos 8 cos_0sin 8 sinq>

1970008111-077



il IBM
Introduction to Trajectory .Estimation H69-0009-R

DATE 5/9/69
RT['_._ Mathematical Report

PAGE ?1

15.4 aA _ -t ' ' -y' x'
aS Z ,Z [y' sin e -x' sin _ cos e, -x sin '0 sin e cos e, cos _o,o, o, o] [ 10]

p - z

p2 - z' 2 (14. 14)

Find __EE
aS

a_"= _,z z. ,.,z\T_v/ +_' _ _s
I+ "zt

2 ,2
p -z

P - I [0,0,I,0,0,0] z' _S'=- 2 '2 ,2

p p -z Z(p z - z'2) 3/_'[zx''zy''O'O'O'O]

= pZIJloZ - z'Z - z [0,0,1,0,0,03 - z'[x',y O,O,O, uJl'_-_-

I -x'z', -y'z', p -z 'z, 0,0,0 )aS

._._ P2_oZ - z ,2

I [ ,Z, (p2 )COS '_) CO' _,
"' = x sin 8 + y'z' sincp cos 8 + - z'2

p p -z

-x'z' cos O + Y'V _ sincpsin @ + - z cos ¢psin 8,

-y'z'cos_0+ (pz -z'2)sin_, 0,0,0]

15.7 _E I [. , Z 2a-"S'= z (x - xs) + p cos ¢pcos e,-z'(y - ys) + p cos ¢psin 8,

2V 2 ,2. p p -z

-z'(z - zs) + p sin _0, 0,0,0 [10]

I'
0

t
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where

[ IL:" :lExl
x - xs V-sin 0 -sin£ocos 8 cos £ocos

15.8 y Ys = c s 0 -sin %0sin 0 cos £0sin y' (14.I0, 14.;.Z)

cos q) sin c_ z '
Z Z S

0

• = =p If, O] = _T_5_o _z_ _s

=- x- xs, y -ys, z - z , 0, 0, 0 [10]p s

-I zCL
15.11 D = sin -- (14.2Z)

P

Find _ where Q =

F

' First find bD ; then

}/

bD _D b?L b_'O _r_._L= L T 9_'

15.lZ _ : _YL _r'G bO ' where b_'G ({.4.19}
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15. 13 _--_- = -r sin_0 sin X r cos q_cos X cos q0sin X (14. 16)

r cos q0 0 sin q_

15. 14 _D p _ 1 1 BzCL

--:_2 z cL _" +_-5_ L P - zCL Br L

]
= z -Y--P +-7-- ,o,zCL_z_ F_cLo Zc_.Lp p

: _' [_]_ o,o,
p - zCL

" zeL zCL P
: [11]

": Z_] Z Z CL' YCL' zCL
P _P - zCL

-1
_' 15 15 HA = tan (14.Z3)

_ ' \xCL /

Find _(HA)
aQ
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5_-L = xcLZ + YCL2 CL + xCL' :Sr'L J

2

- 2 CLI-1)_ [-1, O, O] +_[0, -1, 0
p - zCLL xCL xCL

- Z [YcL' -x 0 [II]CL
p - zCL

Then

15.16 _(HA) _(HA) 5rL_rG•---- (15.iz)

Find Derivatives of Relative Measurements

15.17 S = ; L = (14.27)

L._LJ

' 15.18 L " 114.Z8)
=

L?, 114.291

1 1 z_T 5"S= _S 114.301

15.19 _'_S: _"S =Z

: ,]
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15.20 -_P-- ^T _ _ 9] = p_I, = p _L

15.21
dt = d--{_,_'_''= 2 2p p = p p (14.31)

•__ ^

t5.22m P p):P _s _s

= p [_, -I] + p I - p;T [-I, 9]

'.L. ^

__{^T ^ ___+ _T

: p [9, I] + p I - pp ][I, 9]

^^T T
= I- pp ,

15.24 8 = = p e 1 (14.35)
I

I I82 P e 2

] 'AT^ Ip e_8 _ 3_]

Find 5--_-8and
_S BL

A ^ A

_e 1 _e 2 _e 3

15.25 Z'-L-"= 5T = TL- = ¢ (14.32 - 34)
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^

_ [ ^^TQ_el _ ± I - rr j [I, ¢]15.26 bS 8S = r

-- =_x_=_-- _--
e3 rv = -vr

8e 3 ¢_ 8v _ 8r

-_-= r_- _= _-_, _]

: ^

'°'e#['-'15.27 8-_-= e3e 3 [_, 7]

ez iT T) - _'_- _'_- _ _)¥= X X r = rvl" = -rr v = (rv - vr

: 8F2 _ _ =_
--= rv[l, {_] - rr[_, I] + [rv _-'__s - _ r ]If, ¢]

= [2 -vr,- rr]

^

--=-- - vr, - rr]
15.z8 _s ez I- e2ezJ[27_ _

^

15 29 _p : I- pp j E-I, (_];, " 88

^

15.30 _ = I- pp j If, ¢]M.,
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Then

. {^T^ \ ^
_1 _\P el) AT _el ^T ____.^

15.31 _S - _S = p _T + el 8s

AT

e 1^^Tl --[i-^^T1= - rr ][I, _] + pp _][-I, ¢1
r p

= I - rr / - I - pp , _ (15.26, 15.29)
P

/^ TA / A ^
381 8_p el/ AT _el AT

15. 32 _L - _L - p TL-- + el 8L

^AT
= I - pp , ¢ (15.25, 15.30)

In the same manner:

^TA _ a_82 8 p e2} AT _e2 AT ^

15.33 BS - _S = p _ + ez _p3SL
,i:

/AT^ \

15.34 _--L-= _L = e2 BL

/^T^ \ ^

883 8_p e3) ^T 8e3 ^Ti
15.35 _--_--= 8S = p _ + e3 8S

/^T^ \

15.36 8L - _L = e3 3L

m4_ .

i
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bf (Used only when b is adjoined to the state vector, in15.38 _= I
_b order to be estimated along with the trajectory

parameters)

15.39 _= ; L_ _s j

As shown before:

d _T_ _T--

^

AT-- AT -- --T
15.40 T_ o p :o +o 5S

= ;TEe [] 4 p I- pp j[I¢]

15.41 = - PP ' ; = pZ '

Then

'--T

15.42 _-_= c [p 3 --ZP3 +_ P4-'Z ' P3 + P4 115.39, 15.41) [I0]

To evaluate 15.4Z "_ and p are computed at time, t$ (14.48), by the same

iterative method used in obtaining 14.40 and 14.41.

_._ _ _ , _ •= "-f'T "_ ';_" It0]r

;t

1970008111-085



o_ Introduction to Trajectory Estimation H69-0009-R

'IBMo_ DATE 5/9/69
RTP.E Mathematical Report

2 PAGE 79

T P_ - Yt tr 2 c15.45 _'_ = _" t r 2 c [tO]

"--' - tr g [I0]_.46 _=_- _ 4 _ _ _:_r 2 c c

where

t - _ _ = t, (14.47)r 2 c

i

!
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16. ESTIMATING THE TRAJEC£ORIES OF TWO SPACECRAFT

SIMULTANEOUSLY, USING BOTH GROUND AND
ONBOARD OBSERVATIONS

Early planners intended to estimate the Apollo trajectory by processing

onboard observations along with those received from the sparsely-located and

costly earth tracking stations. This was for two reasons: (l) It is possible for

a spacecraft to complete ,several earth orbits out of sight of the tracking net-

work. (2) The geometry at lunar distances precludes the successful use of

earth-based measurements other than doppler, which by itself may not reliably

determine a lunar trajectory. Sometime later, in order to minimize depen-

dency on telemetry and to simplify computer programs, the decision was made

to estimate the trajectories of the CSM and LM separately, using only earth-

based radar data. Systems of the future, however, will probably rely more on

onboard observations, and then such measurements between neighboring space-

craft may be used to adjust both trajectories simultaneously. This would be an

accurate way to determine their relative state vector when far from the inertial

origin. The mathematics for this is discussed for possible future use.

Inertial Origin

Figure 16. 1
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Define (See Figure 16. I):

16.1 S =I_ I CSM state vector

I:l
16.2 L = L LM state vector

rLJ

16.3 B =I_ ] relative state vector

A
First consider that an estimate, B, of the relative state vector is desired

during a lunar rendezvous, and onboard observations between the spacecraft
^ ^

are available. In the Apollo program S and L are estimated separately by the

following two equations.

[ ]r ]_T I_ F-l(g S)+ _T
16.4 (_-S)= _-I+_-_--R- _-_ L - b-_-R-l(a-S) (i3.1i)

[ ]i[ ]^ ~-I _ TR_I _ _ I _ T
16.5 (L- L) = F L +_-_-- _-_ L (L- L)+_--_-R'l(o_- _) (13.11)

If the CSM ephemeris is assumed well-known and the LM ephemeris uncer-

tain (which is a real possibility), relative measurements between the two space-
^

craft could be used in 16.5 to find L. Then

A A A

16.6 B=L-S

During rendezvous, equation 16.6 requires the subtraction of very large,

nearly-equal quantities, but this is handled accurately enough by the IBM 360

in double precision. This simple procedure gives adequate results in this case.
We can conceive, however, that in the future situations may arise where the

more general approach would be useful. That is, every measurement would be
used to adjust the entire twelve-element state vector.
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First choose the twelve functionally independent basis elements of the state

vector; then all other elements in the space will be functions of these. A possi-

ble choice is . ; then B would be a function of S and L. But in order to

avoid the subtraction of 16.6 and estimate B directly, choose H T --=rEsT BTj

as the state vector to be estimated. Now all elements of H are functionally

independent and the elements of L are functions of S and B, i. e.,

16.7 L=S+B

^

From 13. II and 13. 13 the equations for estimating H are

aB -1 ,-, a8T t
- _ (H - H) +_--_-R" (c_- 8)16.1014 HI-- 1 +g-ff-R aH

and

16.11FH= +_--fi--R-_-_

The partitioned forms of 16. I0 and 16. II are useful as references in later
sections.
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Define :

A = a8---_-TR "l _
- _S 5S

C 5T R- 1 5__B
58 5B

16. 12 M -_ 5_--TTR-1
5B 5B

T

N = _B_..LR'I(c_ _ 8)
_S

T

D = °--P'--R'I(o_'_- 8)
5B

Then, using 16. 10, 16. ii, 16. IZ,

g:
:. and

%
T

:, Note that the partitioned matrices can be inverted by Z. 19.
i,

, The partitioned state transition matrix for propagating the covariance

(16.14) from time, t o , to time, t, is

%

= 16. 15 5I-I =

U_So

i
i
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aS bL

It would be convenient to express 16. 15 in terms of _ and -_, sincebLo

these derivatives can be computed by methods discussed in Section 11. As a

worthwhile exercise, we shall derive the required expression in two different
F "l

ways. First, suppose we had chosen LST, LTJ as the basis elements; then a
small deviation in the state vector at time, t, would be related to a small devia-

tion at time, t o , as

where

t

and

-l[t,l6So - S16. 18 -=

-SL°-J to

bS ,bL

Notice that ?L-'-_ = bS---_= 0 , since S at time, t, is functionally independent

of L at time, t o , and vice versa, This is apparent from examining the equa-

tions of motion, remembering:

' F: lt 16.19 S" _ L-- , B= = L F

t L%J LrL _
where

16.zo _"= - _ +gff, #, q, t) (l. l)3
r
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(_L, )" _trL r--L, m, t16.21 rL = -T+ gL

rL

16. Z2 p -_ rL - r

_._t_on,_._6c_ _o_ _to__o_t_o_o_[S 6__]_s
follows :

16.23 =

_L

"_ L_'-'J - S_o - U_oJ

16.24 =

,_J _[__ _,
_H

The matrix in 16.24 is the desired expression of -_-H-_n (16.18). Now this

same expression will bc derived by a more direct method. Assume that
r

LsT BTJ is tile set of functionally independent basis elements and prop_qation
is as

_o _oL_oJ
e

From 16.20 S is a function of So.

• 16.26 S = S(So)
?

Then

_S _S

16.z7_-Co-_K
|
I
I

i
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8S
16.28 --=

BBo

From 16.22 B is a function of S o and B o,

16.29 B = B(So, Bo) -" L - S (where Lo = So + Bo)

= L[Lo(So,Bo)]-S(So)

_L _L

Then, since bL-'--_= 8B---_= I,

8B _L _Lo _S _L _S
16.30 _ = ........

_So _Lo _So _So _Lo _So

and

t6.31_._B_=_. _Lo= ___L_L
_Bo _Lo _Bo _Lo

Substituting 16.27, 28, 30, 31 into 16 25 gives 16. Z4 again.

This completes the discussion of the general method for using onboard

observations to estimate relative trajectories. The formulation could be modi-

fied in many ways to fitthe requirements of specific situations. The process

1.eadingto 16.6 is an example of such a modification.
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17. MODIFICATION OF THE STATE COVARIANCE MATRIX

Up till now we have accounted for observational errors, assuming, however,

that the forces acting on a spacecraft are modeled perfectly as functions of pre-
cisely-known physical parameters. Actually our knowledge of these factors is

limited, and for simplicity of computations we do not always even use the best

model available. Questions arise, therefore, as to how we can account for any

adverse effects on the estimation. It is not intuitively obvious that anything

bad should occur, but on the contrary it seems that the estimates should always

continue to improve as more measurement batches are processed. Histori-

cally, in the initial testing of the Bayes estimation programs, the covariance

matrix, indeed, did get smaller and smaller, indicating a more accurate esti-

mate of the state vector; the sequence of estimates, on the other hand, initially
converged rapidly toward the true value, approacaed a minimum error after

about two orbits, and then slowly began to diverge. The estimation process is
equivalent to the method of generalized weighted least squares, where the a

priori state vector represents a pseudomeasurement weighted by the a priori

inverse state covariance matrix. This weighting matrix grows with each se-

quential step; so estimates become increasingly dominated by the a priori state,

until the effect of new measurements is negligible. This situation implies that

the estimates are always improving, which would be true if the dynamic model

were perfect. The neglected errors of the real model, however, cause the pro-

pagated estimate of the state vector to depart farther from the truth. Hopefully,
this would be corrected by processing the next batch, but the dilemma is met

when the effect of the next batch becomes negligible. Then the shrinking deter-

minant of the state covariance matrix ceases to truly represent the growing

state estimate error, which is induced by propagation and uncorrected by

estimation. A major problem in implementing this program is how to consider

nodel errors in a way to achieve optimum estimates with errors correctly re-

presented by the covariance matrix. All the tried methods have involved modi-

fication of the state covariance matrix. The simplest way is to consider that

the origin of model errors is unknown; then multiply the matrix by a scalar > 1

when the determinant appears too small. A frequently-used manual control for

this is in the real time system. Another approach is to guess the most likely

sources of error, such as atmospheric drag, fuel venting and gravitational

constant, and derive a term to be added to the state covariance matrix in pro-

pagation. This way, used in the Gemini program, was justified as an applica-

tion of proper corrections to respective components. It took a lot of computing
time, however, and seemed no more effective than the first method. A variation

of the latter, which considers the model parameters in propagation of covariance,

is in the Apollo program (Section 19). It has also presented many problems and

has not yet proved completely satisfactory. Another approach (Section Z0), as

yet untried, is exponential downweighting of past data with respect to time.
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This reduces the observation arc length to one that can be accurately repro-

duced by the model, and it also has the advantage of producing estimates

independent of measurement batching and times of processing. [9]

The remainder of this section will present a general modification of a state

covariance matrix with the intent of determining what can be done, what does it

mean geometrically, and what are some reasonable criteria for evaluating any

scheme for altering the state covariance matrix.

Define

17.1 S true value of state vector, (p x 1)

17.2 S estimate of S

17.3 68 = S - S state error vector

17.4 _ = E{6S5S T) state covariance matrix

17.5 T a non-singular transformation with complex elements,

(p x p)

17.6 T _ conjugate transpose of T

Then the most general modification possible of 6S can be represented by

TSS; the most general modification of r, by

17.7 r,:_: E(T6 T _)

The problem is to choose the matrix, T, to modify F in a manner justified

numerically as an advantage to the processor. For now, however, we shall be

concerned with developing criteria to show whether a particular choice of T is

reasonable, rather than with making the choice. Actual choices will be made at

the end of this section and tested against the criteria. To start with we assume
4

that T is diagonal. After all we-are trying to preserve the past history, _, as

nearly as possib)e, merely giving it an empirical "nudge" to correct some
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dilemma in the processor. To do this we should choose the simplest transfor-

mation possible. If T were non-diagonal, the change in I" would probably be

complicated, drastic, and difficult to justify. With this as:_u,_tption the jth

diagonal element of T is the complex number

: Cj17.8 Tjj + 1yj

where Cj is a scalar constant to be chosen and _j is a zero-mean random
variable uncorrelated with state noise, such that

Z
17.9 E jy

o (j _ k)

Z

and _ _ is a scalar constant to be chosen. Defining ¥j as a random variable

in this way ensures that the modified matrix, F. (17.7), will have real elements,

whereas y as a constant would result in complex elements.

S TIf
= Ix I .... , x ] andP

N

17.10 F= [oij ] (i,j = 1, .... p)

Then by 17.7 the elements of F correspond to the elements of F, as

_i_jOij i ¢ j

17. II c_ij

_i + ni °ii _i

7.

• 17.12. (Note: oi = oii)
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Note that the matrix F, is stillpositive definite, since

2 ._2i_I>017.13l_,i_cI"" p

The geometrical meaning of this transformation will be illustrated by con-

sidering a three-dimensional state error vector,

17. 14 6_T = [5_, 55, 6_]

and a matrix, T, which modifies only the 6z component,

17.15 T = 1

_+i

(Note: _ +iy -43 + zy:_) (17.8)

Then the modified covariance matrix is
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Also

ox 0 1 Oxy _2_--_+ 2 pxz c_x O

• 1 . .2f_--.._20y z o17 19 _,= oy Oxy y
_ +_

¢ %_ nz C p+ a +'q Oz

The quadratic form associated with 17. 19 is

lVZ0 z_ : 6_Ty,16_

Inspection of equations 17. 16 and 17.21 shows the constraints imposed in
2.

the choice of _ and T] and also the geometric significance.

Some examples follow:

[ a. First notice that if _ = 1 and _] = 0, then T = I, F, = F, andthe
: Z
_ quadratic form is unchanged. If various values of _ and _] exist to

cure the same problem in the filter, then the choice should be the
values closest to these fundamental values.

V

_]Z Z if _ = 1 for the off-diagonal terms.• + < 1, cannot be used on a z,

For example, initially In the Apollo program an attempt was made to

1
i
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F

modify an augmented state covariance matrix, NT , by
W

multiplying F by a positive scalar < 1; the resulting matrix was not
q

always positive definite.

LwT _ (o< I +13 ._ I)
(I + n2)

c. If _ = 0 and 172 = 1, then the covariance matrix remains unchanged

except that elements multiplied by _ are zeroed. An example of

this is the valid procedure (under our rules) used in the Apollo pro-

gram to modify the matrix as

d. If 132 = 0, then the 6"_ component is re-scaled (multiplied by 1), and

correlation coefficients are not altered (17.21). Or equivalently, a

row and column of the covariance matrix is multiplied by _ (17. 16).

This was used instead of b, above, to decrease the value of F as
q

--* ¢_T CZ_I (o<¢<1)

Another example, used in the Apollo program, and also in exponential

downweighting, is the multiplication of the entire matrix by a scalar as

_..--,. Cz_, (l < c:z)
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e. If Z + _ = I, then the 6z correlation coefficients are multiplied

by (o,and no components are re-scaled (17.21). For example (not

used in the Apollo program)

•.-.. ]CwT (0 < C2< l)

f. Now l:eferto equation 17. 16. If _ = i and _]is chosen so that
Z 2

I]c_ = k, a constant, then
Z

N Z
17.2Z F._ = 0 o a

x xy xz

oZ o
xy y yz

2
(7 o cT +k
xz yz z .J

All we have done is add a constant to a main diagonal element. This

is the method used in the LM powered flightprocessor [IZ]. This

method was arrived at by considering the model errors in the deriva-

tion of the filter. It is interesting to note that we can arrive at the

same method empirically, using the rules of this section.

From this we can compute the effects on re-scaling and correlation result-

ing from various other choices of _ and I]z. We start out knowing that theoreti-
2

cally the best _ and _ are as in (a) above, and any deviations from this should

be justified numerically.
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18. ESTIMATION OF MEASUREMENT MODEL BIASES

The mathematical model of a measurement may be a function of a bias

element such as the scalar, b, in 14.44. Although b is essentially a constant,

its value may drift slightly and is not known precisely; so tb." best estimate of it

is used in computation. Because of this the filter is designed to allow the tra-

jectory controller to alter the process at any sequential step so as to include

estimation of the bias elements. Mathematically this is done by adjoining the

bias elements to the state vector, then estimating this augmented state vector,

and finally contracting the augmented state vector and covariance matrix back

to their original dimensions. After this the filter proceeds in the usual manner

(unless interrupted again), and the new values of the bias elements are used in

modeling measurements. In the following discussion we show how to alter the

filter to estimate bias elements and then return it to the original form.

Define

mean value of the bias vector, the elements of which are
18.1 b = "

q

Conforming to previous notation:

18.2 b a priori estimate of b

18.3 5b = b - b

^

18.4 b improved estimate of b

^ ^

18. 5 5b = b - b

18.6 t i < tj < t k anchor times, where t i is the time of estimating b, and .

tj and t k are the next two anchor times.

From here on the derivation is just like equations 16.8 - 16. 14 with B

replaced by b. The augmented state vector to be estimated at time, t i, is

187 HT--[sT,bT] 116.81
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18.8 rH E(_S_T)= = (16.9)

_T rbJ

Define

18.9 -=

rb_] T

The augmented state vector, H, is formed at time, ti, and since we have no

prior knowledge of _, assume it to be zero.

N

18.10 _=

Then 18.9 becomes

Combining 16.13 and 18.11, the filter for estimating the augmented state
vector is

where
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[;The solution to 18. 12, T b , is the improved estimate of the augmented

state vector at time, t i, and 18. 13 is the associated covariance matrix. These

(18. 12, 18.13) are propagated from time, t i, to time, tj, where the next batch

of measurements will be processed to estimate S only.

That is,

18.14

b i LbJj

and

18. 15 T T

J

The quadratic form to be minimized with respect to S at time, tj, is

" " T + (c_ - B)TR-I(a - _)

Using the methods of Section lZ,

18. 17 _ = = [-I _] T " aT

a_ =_ + aS T R'laS18.18 _ _ _

Using Newton's method (Section 12):

-1

1970008111-103



ij IBM
Introduction to Trajectory Estimation H69-0009-R

DATE 5/'9/69
RTCC MathematicalReport

PAGE 97

[ ]_i[ ],_ ,_,_ a8 T R-I
^ a8 T 1 ;58 'G(S - S) + V(b - b) +_T (co - 8)18.zo s s= _+T_"

^

where S is the vector to which we would converge if we knew the value ofc

b' - b. Since we do not know th:., we define

^ ^ ^-I--_-VD18. Zl S _ S Q
6

and

^ N a8 T - 1 58

18. ZZ Q _G +T_--R --as

Then equation 18. Z0 is expressed as

18.23 (S - S) = Q - S) +TR- (a - 8) (18.20-22)

^

_ where convergence is to the vector, S.
i"
'_ A A

Now we show that Q = G, as follows:

,,". By the method of IZ. 51 and 12.5Z,

% A A _8 T I Q-A " _8 I

18.24 F : E(6S6S T): 6 -I g? +_R aS (18.Z3)
>

i8.z5o_:E 6_6"_: G_ 1i8.Z3)

A ,-,

18 Z6 Fb b

[ ]I4
A Ao v _ ; -'

= T (18.9, 18.24-6)
18. Z7 _rT n
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18.28 G = F - wF b w (2.20, 18.27)

and similarly

I

18.29 _b I''T
= _ (2.20, 18.9)

from which

_-_--I_T _,-I

18.30 wr b to =_'-G

Substituting 18.24 and 18.25 into 18.28 gives

18.31 G = _-I g_.,+_R- _ - Q -G_Fb-W-GQ -

18.32 . _-I - G -JGQ (18.30)

18.33 . _-I['_._]_-I (18.32)

^-1 ^ I[ _B T I _'S_B]_-I (18.22, 18.33)18.34 G :Q- _+_-T-R-

^ -1 _-I18.35 G =

which was to be proved, and 18.23 can be written

, 18.36 (S - S) = _-1 (g" 8) + _TR" (or - B) 118.35)
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This equation (18.36) was derived using a rather i,,,:damental approach, starting

with 18. 14 and 18. 15 and forming the quadratic fo:rn, 18. 16. A quicker deriva-

tion which provides less insight is as follows: As ;J 18. 14 and 18. 15 we start

with the a priori quantities

J a_d _T _6

Then as in 18. IZ, the filterfor estimating the augmented state vector at

time, t., is
J

s- 5 A
= +

where

v _ +. v+ �^-1

18.38 T _ _T+cT _. + T Cb

Modifying this filter to estimate S only is equivalent to setting

18.39 b=b =b

Substituting 18.39 into 18.37 gives

from which

18.41 6S =F(G6S +N) +m(V-SS + D)

18.42 _ =_T{GsS+N} +_b_TSs+D}
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Solving 13.42 for vT6s + D and substituting into 18.41 gives

^ A-I_T)[8.43 5S (_ ^= - w£b (G6g + N)

and

^

18.44 (S - S) = _-l[_(g_ S) + N] (18.43)

which is the same as 18.36. This latter derivation is worth remembering

for those cases where the state vector is frequently augmented and contracted.

Then 18.37 can be the basic filter, which is altered by the input, 18.39.

Equation 18.36 provides the estimate at time, t.. The state vector and
J

covariance matrix have been reduced to the original dimensions, and the bias

vector has no effect on subsequent estimates. Notice that the solution of 18.36
a

requires propagation only of the partition, Gi, of 18.15 as

A ,,_
G. ---_G..
i j

The augmented state transition matrix is

-_s. _s: -_s -

_S. _b _S.
1 1

18.45 =

_S. _b
I m u

and the inverse is

18.46 i
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The transition of 18. 15 is

18.47 | : _T G ^ _7.

T J ¢9 T J CJ

from which

bS. T bS.
1 ^ 1

18.48 Gj =_T. Gi_ "
J J

or equivalently

8S. _S T

_S. _S.
1 1

From here on the sequential estimation procedure is defined by 18.36 and

18.49, regardless of whatever label is assigned to the matrix, G. So replace
-1

the letter, G, by F in 18.36 and 18.49, and we have returned to the original
filter and notation.

The results of all the above details can be summarized in the following very

simple procedure. After estimating the augmented state vector at time, ti, wehave

18.50 T r : T 118.91
f i

'_ Then the filter to estimate S at time, t., is _
J

_ p

, ,, = _ ~-l~
i . (s- + (a-_118.51 (S - S)j + aSj _)Sj S)j aSj

|
I
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where

_,Sj ^ _S T
l_.Sz Y. :--G.[ l J (1836,18.49)j _S. _S.

1 1

and subseque.h :btimates and notation are as in Section 13.

In the ATE program this procedure has been modified. Equation 18.51 is

used, but 18.52 is replaced by

_S. _S T18.53_ : _j _ iTg-
1 1

^

This is equivalent to setting the partition w. = _ in 18.50, as in example (c),
1

Section 17. This modification does not give any computational advantage but it

is permissible by the rules of Section 17 as long as subsequent estimates are

not degraded significantly.

!
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19. CONSIDERING DYNAMIC MODEL PARAMETERS

IN PROPAGATION OF COVARIANCE

In Section 17 we mentioned that the state covariance matrix is modified in

the ATE program by considering the variances of dynamic model parameters in

' propagation, even though the parameters are not estimated. In this section we

show that these considerations, by themselves, leave the filter unchanged. The

ATE method is achieved, however, by including an empirical modification to

the augmented state covariance matrix.

Definitions

19.1 j = i + 1 (i= 0, 1.... )

19. Z t. time of processing the ith sequential batch of measureiTlents
i

19.3 t. the time of processing the next sequential batch after time, t.
j z

19.4 S. state vector estimated at time, t.
1 I

= vector of dynamic model parameters
19. 5 q Cd

' 19.6 augmented state vector at time, t.
q i 1

il 19.7 = T a priori augmented state covariance matrix

: q-]i i

i , 19.8 (_ - _)i vector of residuals of the ith batch

I ' 19.9 A. -8_T R. -18-'_-

i =88. I 88.
i I

19.10 N. 8__R£I(c_ . _}ii -=8S.
1
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Note that generally, the notation is as in Section 18, except that b is

replaced by q.

InitialAs sumptions

The basic filteris modified using these assumptions:

(t) o = ¢ (19.7)

(2) S, only, is estimated

(3) The updated augmented state covariance matrix is propagated as

T

i q-Jj

Note that is input to the program, and then Fqo = for every i. ThisO

is because S, only, is estimated.

The Modified Filter

The a priori quantities at time, t., are
I

19. I 1 and = T (19.7)

LqAi qA i i

with only S to be estimated. We showed in Section 18 that the filter for
this is

' 19.1Z 1_ - S)i = [Gi + A']-I[Gi(_, - S)i + Nil 118.36)

where e

N

19.13 G. = G. + A. (18.ZZ, 18.35)
l I l

1970008111-111



_I Introduction to '['re_je_:io:cy]:;:_g_i_atJon t169-0009-R

_TC[_ Mathematical Report

PAGE 105

and the necessary propagation of covariance is

N_ _sj T
19. 14 G 1 ^ -I _S

j" = _S--_.G._ ___!,_S. (18.49, 19. g7, 19. 31)
i i

So the modified filterwhich results fron_ the three initialassumptions is

defined by 19. 12, 19. 13, and 19. 14.

What to Prove

The basic filterderived in Section 13 is

-i

19. 15 (S - S)i = ! Ai - S)i

where

^-I 1
19.16 I'. =_'- + A.

1 1 1

and propagation of covariance is

,._ _Sj ^ _S T

_.; 19. 17 F.9_i= Fi _.,

_. (Note: Do not confuse F.1 in 19.15 with F.1 of 19.11. They are not the

same, except at time, t .)
.r O

In. order to prove that the basic and modified filters (19. 12 and 19, 15) are

identical, it is necessary and sufficient to show that

I' Fk
19.18 Gk =_"-1 (k:0,1 .... )

" for all k.

t

t
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Proof

Proof is by induction on k.

k=0:

19. 19 I_'"o = I_ (assumption i)

-l
F_'_-' _, _'r- I,--,T7 ---I

19.z0 Go = [ro -®orq WoJ = ro (19.19)

k=i:

19.21 G. =_-I (induction hypothesis)
I I

19.z3 --L_(_i+Ai)- _--_-._J (,9.,3}

[_sj I -I _sT7-I

_S.

= J (1916)
I9.Z5 LaSi_i

a

19.26 = r. (19.17)
J

Therefore, the modified filter is identical to the basic filter.
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An Empirical Modification

In the ATE program the modified filteris used together with the empirical

modification of Section 17, example (c). By assumption 3, covariance is pro-

pagated as

N _ T
F m bS. _S. ^ ^ bSj j F m j ¢ G

OS. 8q _S.
l 1

19. Z7 = = [i0]

T
"_T N AT
W r _ I w _ J I _T

- q-j _ _ q_i__q _ -j

m

_Sj _ST _S 8ST _S. ^T _ST _S. _ST _S. ^ _Sj

z 1 i 1 1
19.28 :

AT _ST _ST

aS. q _q q
1 N

The partition, G., for use in the filter (19.1Z) is computed as
J

19.29 G.-1 .... I-_T:P.-w.I" m.
J ,1 J q J

At this point is the empirical modification. The partition _. is set equal
to zero, so that J

_' 19.30 G. 1 A J + w. + w. +
j = 8S. Fi_S--'_ _ _ _ 8S. 8q q_q

}. Z 1 i I

• Note that, without setting _. = _, substituting the partitions of 19.28 into

{ 19.29 gives J

,_. _Sji 19.31 G 1 ^-1 aS
.I =8S. G"• " 1 8S.

{ 1 1
}

{
t
{
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which is equation 19. 14.

Comments

Certainly the use of 19.30 (rather than 19.31) complicates the filter. The
question is, however, does it help cure the problems discussed in Section 177

Of course, some experimentation would be required with any empirical method

in order to obtain satisfactory results. For example, in the Gemini program

the matrix, G, was modified as

19.3zG1 asj _s"r _s _sT
"_" = _ _ _ [3]j _s._i_ + _q_q

1 1

This program (19.32)was tuned to give excellent results by adjusting the

elements of F . Based on this success, then, it was reasonable to hope that
q

19.30 could be used in the Apollo program as a more versatile version of 19.32.

Due, perhaps, to the greater model errors in the Apollo, primarily arising from

an inadequate model of SIVB venting, the method so far has not been completely

successful. Further adjustment of the values of I" may improve the effect.
q

Exponential downweighting of data, explained in the next section, is another

method which should be considered, particularly when measurements are pro-

cessed in batches. Variations of 19.3Z work well when measurements are pro-
cessed singly, as in the Kalman filter {Section 21).

J

{
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Z0. EXPONENTIAL DOWNWJ,(GHTIN(_ OF PAST DATA

In Section 13 we derived the sequential, _ ' 4_,..t.,tt-, , lc_a,st-.squares filter, and

in Section 17 we discussed the assumption that the equations of motion model tile

trajectory "perfectly" For the purpose of our d,_rivation this assumption is

equivalent to saying that first-order erroc propagation is valid. Since the model

is not perfect, however, there is some trajectory arc length b,; yond which the

assumption does not hold. This problem can be avoided by letting the observa-

tion weight decrease exponentially with time at an appropriate rate; so ti_en, in

effect, the filter is alway_ applied to a segment of past trajectory short enough

to conform to the assumption. This method is :d.nlp], _. to implement and adjust,

and estimates do not depend on observation L.,:. . lg or times of processing.

1he method works as follows: If R i is the covaria:_ce matrix of a measure-

ment vector at time ti; to, the anchor tit, re for convergence; e, the base of

Napierian logorithms; and )_ _ 0, a chosen scalar constant; then the modified

covariance matrix is mapped from time il} to t 1 as

_ _ _S 1 _S 1%(t 1
_S 1 t(t 1 t O) _.(t 0 ti)Ri _
_S---Oe e _S0 _S 0 e - ti)Ri 8S 0

where Si is the vector of functionally independent trajectory parameters at
tat

; time t_. Thus the multiplier, e , is always used when mapping covariance

over the interval At. We prove that with first-order approximations valid (as

_: required by our Bayes trajectory processor) the mathematical consistency is
, retained. That is, if we partition a finite set of measurements into non-empty

subsets for sequential processing, the final estimate is indepen.dent of the par--
{ tition, the sequential order, and times of processing. The following is the first

step of a proof by induction. In the last section we present an algebraic proof.

'i Let a be a p-element measurement vector. Then from 13.3 a better

estimate at time t 1 is

zo i - s)j R-I R-l _
. = _S 1 _SW
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Since the observations arc uncorrelated in time and R is a diagonal matrix,

equation 20. 1 can be written

-1 .

^ _ __i R -1 dSi <)8i R -I (rs- p) Izo. z (s - s) 1 =
ki:l _C 1 L.i=i _,-gTt 1

This (20.2) is modified using expon('ntial ,.h)wn,-vei_hting as

^ _i 1 -I ' i i I -1

20.3 (S- S)I = _-_-ie _'-_IJ --
i _S e " R. (o, - 8)

"= :1 1 1U t

and equivalently

_-1

z0.4 (s- s)1-- _e _ _s-7k,_i=l 1

[i_ 8_iT X(ti tl)RTl P _T X(ti t

" i " t l ) I

-- e (a - B)i + 52. _T _ aT" (o. - 8)
=I 8SI _ ii=k FI l

where (0 < k< p)

If the first k measurements were processed at time t 0< t 1, we would

have

7[ iZ0.5 (S - S)0 = e R i e R. _ (a - _),:,N NJ , .
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Now consider the expression from Z0.4:

k _T k(ti _ tl) -i B_i

20.6 E _s-e i_.
i=l I I _S 1

_s0T X(t0 tl) 1 (ti - t0)RT1
_SI bS0 i _SoJ bSI

_soT x(to-t,l_i_So -l
=-- ° o _s-7=_ (_o._1bS 1

And also from 20.4:

k bI_ X(ti tl)R_l (co- 8)i
20.7 _-?ei=l z

: =__o_s°_ x(to- t_)_o_(;-s)o (zo._)88 "
1

_So_ x(to-*11_ol_So_s1,, = _S---7 e _S 1 _E0 (S - S)0

f

= (s - s) t
t ,

I

I

t
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Substituting 20.6 and Z0.7 into 20.4 gives

" = l+ E --eZO.8 (S - S)l _S 1 aS1i=k+ 1 l

P _0i X(t i -

s)1+i:k+lE7e ,

This (20.8) is the sequential estimation formula, where the first k measure-

ments were processed at time tO and the rest were processed at time tI. Itis

equivalent to 20.3, where all p measurements were processed at time tI. This

is easily extended by induction to show that 20.3 is the final estimate at tI after

all of o, is processed, regardless of the batching partition and times of process-

ing.

In implementing this method k should be adjustable during tracking. The

value should be large enough so that the segment cf trajectory considered con-

forms tothe model, yet small enough so that past data is not needlessly wasted.
The value of k should increase with the uncertainties in the model. For exam-

ple, an earth orbit with drag and venting uncertainties would require a larger

value of k than a precisely-modeled earth-moon trajectory. Appropriate values

of k for different mission phases and vehicle configurations can be determined

empirically with data from prior missions. Also k can be made adjustable dur-

ing the tracking by a manual entry in the program. Preliminary experimentation
with this method showed that, when the model did not conform to the true orbit,

the estimate was improved bF inserting some small k > 0. Of course down-

weighting vanished when k = 0. Also the sequential estimate was the same as

the estimate obtained by processing all observations in one step.

!
!

i
J
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21. THE KALMAN FILTER

The theoretical derivation of the Kalman filter considers errors in the

dyna" :ic model• If we assume that the model is peifect, then the Kalman filter

becomes just another algorithm for the sequential, weighted, least-squares fil-
ter already derived. We shall show this relationship and then mention some

advantages of each of the two methods. [5]

The Kalman filter is derived directly from the Bayes filter (13. 1 I) as fol-
lows: First write the Bayes filter.

A

-11'_ _ S) + _-.-]__.___R:-l(c_ _ _ (13 11)21.1 {s-sl: * ET_-I* _-J i _

where c_i is the vector of measurements taken at time ti, and

^ -i _T
2".2 r = +I] _R: 1

• _ 8S ] (13.12)1

Choose to process each measurement vector singly as it is received; so

there is only one measurement vector in each batch. Accept the first iteration

of 21.1, rather than iterating until convergence criteria are satisfied. Then
21.1 and 21.2 can be written

¢

,, 21.3 18-8) = _'-1 + R- _ LSS la - 121.1)

-1

} 21.4 F= F -1 +_T 121.2)
;"

il ~ ~where _ now denotes one of the c_i with the subscript dropped and _ = _(S)

_i ' is the measurement vector computed as a function of the a priori state. The
r Kalman filter is another algorithm for computfng 21.3 and 21.4 as follows.

,i

t

i
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Consider the following three equations:

._5_3T[ _3T ]-121._ K_--r_-_-[_ -_--+ R

21.6 S = S + K(ct - _3) Kalman filter

21.7 F= I-K

To show that Zl. 3 and 21.6 are equivalent we prove the following identity:

-I R] -IF-1+-_- R- --R- "-F _ + =K5S 58 tSs

Multiplying on the left by + _ R _ and on the right by

_B "" __._ + R givesggrss

T

Define M - _ of dimension m x n, (m > n). This is commonly the case.
5S

For example, in the Kalman powered flight filter for the LM lunar ascent and
descent the measurement vector has four elements and the state vector, twenty-

one. [IZ]

To show that Z l.4 and Zl. 7 are equivalent, prove the following identity:

{ - }
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- ] ~-IMultiplying on the left by -I + MR IMT and on the right by F gives

IMT -1

Now multiply on the left by M'I and on the right by M -T. (M has a left

inverse, and M T has a right inverse.)

Multiply on the right by M T_M + R .

--R-I(J M +4- S M)- i
¢=¢

: Comparing equations 21. I and 21.2 with 21.5, 21.6, Zl. 7 we can summarize

some of the major differences in the weighted, least-squares (Bayes) and Kalman

filters.

The Bayes filter iterates until convergence, but the Kalman accepts the first
iteration. The iteration of the Bayes filter solves a system of non-linear equa-

l. tions by producing a sequence of linear approximations converging to the final

solution. So if the Bayes iterates more tban once, it normally produces a better

answer than the Kalman. We say "normally" because if the first guess is not

:: close enough, it is possible to have non-convergence or convergence to the wrong

_ answer. [13]

L The Bayes filter can collect measurements and process them in batches at

_' arbitrary times, whereas the Kalman must process each measurement separately
at the time of the measurement. If the Kalman observations are close together

so that the propagation time interval is very small, it may be difficult to modify
the covariance matrix as a function of time. This is because the modification is
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too small to appear in the computer. The Bayes filteravoids this problem by

choosing anchor times sufficiently far apart. The problem with the Kalman fil-

ter can be resolved, however, by modifying the covariance matrix at predeter-

mined time intervals, rather than at the observation time.

The Bayes filteris particularly well adapted to estimating free-flight tra-

jectories of long duration, where the obsurvations actually are received in

batches. Then each batch can be processed as itis received to update the state

vector. The Kalman filteris particularly desirable when the observations are

coming in continually and the trajectory characteristics are such that point-by-

point processing of datais required, e.g., the LM powered flightprocessor. [IZ]

The Bayes filterrequires inversion of matrices with order of the state vec-

tor; the Kalman, with order of the measurement vector. So the Kalman is very

useful in avoiding inversion of large order matrices. For example, in the Kalman

filter, LM, powered flightprocessor [IZ] the state vector has 21 elements; the

measurement vector, 4 elements.

See Battin [6] for a discussion ot trajectory estimation using the Kalman
filter.
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Z2. CORRELATED DOPPLER MEASUREMENTS

Up till now the sequential filters have been derived assuming that the mea-

surement errors are uncorrelated in time. Depending on the particular problem,

it becomes considerably more difficult to develop sequential filters for time cor-

related measurements and this subject alone provides a sizeable area for study

[7]. We need not be concerned with this theory now, however, because all our

measurements are assumed to be uncorreiated except for the very simple case

of doppler (range-rate} observations discussed below.

From equation 14.44 the doppler frequency at time tj is computed as

m4V [(0 + PZ)i (P + PP-)k]2Z. 1 fj = (W3 + b) + c(_i- tk) 1 - 1

where

ti + tk

22.2 tj = 2 (ti - tk > 0)

Define

22.3 Ki actual measurement of cycle count at time, t i

22.4 6K i zero-mean, random error in Ki, 6K i and 6K kuncorrelated (i _ k)

4"

'_ Then

:: 22.5 Ki - Kk = fj(ti - tk) + SKi - 6Kk

and

_; K i _ K k 6 K i - 6 K k

i . 22.6 ti _ tk = fj + ti . tk

. The actual measurements here are K i and Kk, and the pseudomeasurement is

K i . K k

t i - t k
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From now on, for simplification, consider the pseudomeasurement to be

K i - K k. This does not affect our discussion of correlated measurement errors.

Let k = i - I in Z2.5 and consider the following sequence of pseudomeasure-

ments at times, tI < t2 < ... < tn,

ZZ.7 {K i - Ki. 1 = fj(ti - ti_l) + 6K i - 6Ki_l} (i, j = I, .... n)

where

Z2.8 E(6KiSKJ) = I 02 (i= j)0 j)

Itfollows that the covariance matrix associated with 22. ? is

= , [(SKI - 5K0) ... (SK n- 5Kn_l)]_

(n xn) IL6K n 6Kn_ I

o2 2 ' .= . ' -l (nx n)

-l 2

Since this (2Z.9) is not a diagonal matrix, the pseudomeasurements cannot

be processed sequentially by the methods of Section 13. We solve this problem
as follows.

Define

w4v ,.

22.10 AK i = (W3 + b)lti - to) +-- (Pl + P2)i •C

}
2Z. ll Ji-I - AKi-1 + 6Ki-I

f

Substituting Z3. l0 into 22.7 gives

Z2.12 {K i - Ki_ I : AK i - AKi_ I + 6K i - 5Ki.l] (i: I, ..., n)

i:

7

/
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Substituting 22. 11 into 22.12 gives the sequence of pseudomeasurements
modeled as

ZZ. 13 [K i - Ki. I = AK i - Ji-1 + 6Ki} (i= I..... n)

Adjoin Ji-1 to the state vector as an element to be estimated with the pro-

cessing of K i - Ki_l; then the errors in this sequence (22. 13) are uncorrelated,

and the covariance matrix is

R = C21 (n x n)

By combining 2Z. 11 and 2Z. lZ again the improved estimate, :[i-l, is propa-
e_a

gated to become the a priori estimate, Ji, as

N ^

Z2.17 Ji = (Ki " Ki-l) + Ji-I

and from 22.11

e_

Z2.18 JO = AK0

This way of processing the pseudomeasurements was presented to show how

it can be done, but it is really clumsy compared to the following equivalent

method which uses the actual measurements [12 ].

Combining 2Z. 10 and 2Z. 5 we can model the sequence of actual measure-
ments as

Z2.19 [K i = AK i - AK k+ K k+ 6K i - 6Kk] (k<i = I, ..., n)

If we choose k = 0, the covariance matrix associated with 22.19 is

,2 .

i 2 -I 2 • (n x n)Z2.20 R = c . .

i :j:_, (n X n) • •
,', • w
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If k = i - I, then the covariance matrix associated with 22. 19 is the same

as Z2. 9. Neither matrix, bowever, is diagclal.

Define

ZZ.Zl Ik ---AK k - K k + 5K k

Substituting this into 22. 19, each measurement is modeled as

2Z.22 K i = AK i - Ik + 6K i (k < i = l..... n}

Adjoin Ik to the state vector as an element to be estimated; then the errors

in measurements 22.22 are uncorrelated and the covariance matrix is R = aZI.

Substituting 2Z. ZI in to 22.2Z with k = i gives

22.23 Ii = Ik

Therefore, we can write

I k = I0

which is a constant to be re-estimated at each sequential step. From ZZ.Zl

the a priori value for the first step is

ZZ.24 "I0 = AK0 " K0

and measurements are modeled as

2g.25 K i = 5K i - I 0 + 5K i (i = 1..... n) (22.Z2)

Another way of arriving at 22. Z5 is as ioIlows.

Replace the first member only of sequence 2g. 12 by Z2.2g, as

i [ Kl = _KI " I° + 6K1
2g.26 K 2 - K 1 = AK 2 - 5K 1 + 5K 2 - 5K 1

i •K n - Kn. 1 - ANn- &Kn. 1 + 6K n - 6Nno I

1
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Consider I0 as a tr:)jectory parameter to be estimated; then the covariance

matrix associated with 22.26 is

q1 -1

22.Z7 R = 0"2 -I 2 . •

¢ -1

This is just like 22, 9 except for the first diagonal element.

Def'ne

22.28 68i = 5K i - 6Ki_ 1 (i= l..... n), (6K 0 = 0)

The quadratic form associated with 2Z. 28 is

I -I Z . (ZZ.Z7)
22.29 2£o= [5_i "'" 68n ] _-_ -I

¢ -i z _6

which cannot be processed sequentially, since the matrix is not diagonal.

Consider the following:

-i -i ¢ -1 l £ 1 -1 6- -1
-I Z ' -I Z Z •

ZZ.30 • • ' = ' ._

¢ -i ¢ -i z _ z

"i" : i II.' ' .lf-l.l.l C-
t: .

_ "I I I.. I
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De fine

' i....
Then 22.2.9 can be written

¢ .6y
1

22.32 2_0: [Sy I ''' 6yn] _ 1.

' L6_d

and the [Syi] can be processed sequentially by the methods of Section 13.

But applying the transformation of 22.51 to 22. Z6; we see that

Yi = Ki = AKi " I0 + SKi

as in 22.25. We have arrived at this result in different w_,ys to show the

possibility of using ingenuity to develop seqrentia,1 estimators for correlatc_d

measurement errors. See Blum [7] for a more comp:ete discussion.

i
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23. ALGEBRAIC PROOF OF SEQUENTIAL PROPERTIES

A method was presented in Section 20 for downweig:_ting data exponentially

as a function of time in the Bayes filter. An explanation of the method and an

algebraic proof that the sequential properties are retained were given in a pre-

vious 0aper [9]. This section is essentially a copy of the paper [9] with some
minor improvements.

Our purpose is to define and prove a procedure for downweighting past data

within the Bayes processor. We do this by first reviewing a derivation of the
Bayes equation without downweighting. Here we introduce some new definitions

to simplify writing the equation. Then we present an algebraic proof of mathe-

matical consistency. Finally we extend this proof to inclade the case where

data is downweighted by the prescribed formula. Following the proof is a
brief discussion of some practictl aspects of implementation.

De finition s

23.1 S. True value of the state vector (vector of functionally

1 independent trajectory parameters) at time t.
1

23. Z S. A priori estimate of S.
1 1

^

- Z3.3 S. Improved estimate of S.
: 1 1
1

23.4 (S-S)i Small deviation of a priori estimate of state vector
from the true value, at time t.

e
^

Z3.5 (S -S) i Small deviation of improved estimate of state vector
:. from the true value at time t.

Z3.6 E Statistical expectation operator

Z3.7 F_i = E [(S -S) (S-S)T]i A priori state co variance matrix at time t.
J

. A A

Z3:8 Fi- E [(_-S)(S-S)T]i Improved estimate of state covariance matrix at i
time t i

I 23.9 a i An observation vector at time t i _-
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23.10 _i m _ (Si) An observation vector whose elements are deter-

mined as functions of Si. Assume dimension _i <-

dimension Si. This causes no loss in generality,

because if dimension _i > dimension Si, then _i

can be partitioned into subvectors conforming to
the as sumption.

g3.11 (Ct - _)i An observation residual at time t.1

23.12 R i- E [(a-8) {c_-8)T]i Observation covariance matrix at time t i

bS k bSt k

23.13 8Sj --- bSt., i.e., subscript k on a partial derivative impliesj subscript t k

%
Z3.14 aij=- b_ i (a-8} i

b_ r - _i

_3.15wij- _g _i1

23.16 Mj = [aij]

23.17 2qo Quadratic form

Z3.19 X A chosen scalar {_0)

23. Z0 e Base of Napierian logarithms :

_ Z3.21 T As a superscript, indicates the transpose of a
matrix or vector

Derivation -:

! There is a 1-1 correspondence between the elements of M k and Mj as ,

23.22 aik = _ ai j {Z3.14, g3.16} .,..{
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and also

T

_sj _sj
z3.z3 Wik = _Sk Wij _S---_

Consider that we have a finite set of observations. Assuming a normal

distribution of estimate errors about the true values and using the method of

maximum liklihood, the quadratic form to be minimized with respect to S.,
the vector to be estimated, is J

T

23.24 2¢p = _(a_ 8)iT R. "I (a- 8)_ = _ aij Wijai ji 1 - i

Note that definition 23. 10 implies that

_s_=I
_sj _i

If an estimate of the state recto," exists, it is included in the set of observa-

tions. For example

_" (O_- _); R. -I (O_-_)j= (S-S)_ Y -I (S'-S) , and we can keep the_ J J J
}4"

equation in the simple form (Z3.24).

!_: Neglecting terms higher than first order,
i,

= = R. "I

Z3. Z5 _ -_j] • _Sj 1 (a- _)i

= -_ Wijaij (Z3. Z4)
i

z3.z6_ : . Ri _sj Ei w_j 1i: l, ., ._

i 970008i i i-i33
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^

Assume that our best estimate of _, _ = _. Also assume the matrix (23.26)^
is positive definite, assurin_ that the sol,tion to ¢ = _ will minimize (23.24) and

( ^50 _-1
also that _i] exists. Since the solutionto ,_ = _ minimizes the quadratic

j --

form and it is desirable to express the partial derivuiives with respect to the^
true state, we expand _ in a. Taylor series about _ rather than the usual ex-

^

pansion of _ about _.

A _I' ^

23.27 _ = _+ % (S-S)j = _ and the t3ayes estlmation equation is

23.28 (S-S)j = - _ = Wij Wtjaij (23.27)
1

and assuming observation errors are serially uncorrelated

23.29 1"i = E (_-S,,_-S) _ 2 (23.8, 23.28)
i

Now we show that if we partition a finite set of ohservatiAons into non-

empty subsets for sequential processing by 23.28, the final S A at t A is

independent of the partition, the sequential order, and times of processing•

Consider an algebraic system (Mj,*) where

23.30 M. = [aij] (23. 16)J

^

Also consider _. and S. as observations so that
J J

23.31 [(S'-S)j , (S-S)j } C M.J

Let ''.,. be a binary operation such that

2 2

[ ]"[ ], E w.. E ^
23 32 alj :'a2j = i=l tj i=l Wij aij = (S-S). (23.28)• j
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Note that exists either as a true inverse or a pseudoinverse.

_i=l

See Deutsch [4].

Define this operation (23.32) to be the processin__ on Mj of the observa-
• tions taken at,times t 1 and t 2.

23.33 Clearly * is commutative.

Show that * is associative, i.e., that

a2j) ",' , a3j)(alj* * a3j = alj (azj

,_ (23 32)
23.34 (alj* a2j) a3"j = (S - S)j * a3.J

23.35 = I'j + W3j

23.36 = Wij Wij aij = (S- S)j
i=l i=l

A

Note that^ (S - S)j in Z3.36 has the double carat superscript to distinguish

: it from the (S - S)j of 23.34. Also,

, , ) , ) (23.33)
23.37 alj (azj a3j = (azj a3j *alj

Evaluating the right side of 23.37 is the same as evaluating 23.34 after

,. permutation of the "i" subscripts, and the result is again 23.36.

Onow the isomorphism,
4

23.38 (Mj , '_)-- (1VIk' *)

The 1-1 correspondence, aij _'-_aik, is clear from the mapping. (Z3. Z2)
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Also

bSk _S k ^

23.39 _S. alj ':"_ ;:' =_S. a2j = alk a2k (S - S)k
J 3

(?) _Sk ^ _Sk
- =_ ¢ )

5S. (S -S)j _S. (alj a2j
J J

23. 40
= W.. Wij aij_)S. S)j _S. i=l _3 _S. _ -=J J J

23.41 = = (S
1 Wik Wik aik "S)ki=l

It follows that ifwe partition a finite set of observations into non-empty

subsets for sequential processing:

a. Because of the isoArnorphism the image of the process is always on

MA, and the final SA is the same as ifall the processing were on M A.

A

b. Since _:;is associative, SA is independent of the partition.
a

c. Since $ is commutative, SA is independent of the sequential order.

Next we extend the proof to include the method for exponential dova_wei_htin_
of data. (Section 20. ) Re-define

_i

23.42 Wij- ek(ti'tj)-_j _)S---_

and map

23.43 Wik= bS_bskek(tj'tk) Rij_s k (0 _ X)
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Show that

23.44 (Mj , *)--_(M k , *) stillholds.

' 23.45 _Sk

-- (s - s)j_S.
J

k(tk_tj ) X(b_tk I _S.r Z
= ------ _ Wij e e J Wij aij

: _S. i=i _S. _S-- "=
J J

Z3.46 = Wik Wik aik = (S - S)k
i'= i=l

The rest of the definitions, proof, and results still hold.

Implernentation

f Assume that we have a set of m observations taken at times {t 1, t 2, ...,

tm]. Also at t o we have a priori estimates S O and F 0 of the state vector andh ^
its covariance. We wish to obtain Sm and F m ;, t m, the time of the last

_' observation. This is a natural situation as we pLc_eed along a trajectory. As

"i we have shown, the time of precessing is arbitrary as long as the result is^ ^ ^

mapped to t . We choose to estimate S O and F 0 at t O and map these to Sm m
A

and r at t . Rewrite the following equations:
m m

23.47 (S - S)j : Wij Wij aij (23.28)

. k(ti-tj) _8_ R[I bSi
Z3.48 Wij = e _S--T _S--_ (Z3.4Z)

23.49 bSj (Z3.14)
=--. (_-8)iaij bS.

l
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Substituting 23.48 and Z3.49 into 23.47,

^ [m _8i T k (ti-tj) -I _'8i -I

z_.so (s-s)j=[_ e Ri=0 5S. x bS.
J J

[_ 5_i T X (t i - tj) -1

e R (a- _)i
i=0 _S. 1

J

Letting tj = t O and expressing the a priori values

[;o 1
^ _SiT k(ti -to) -1 _8i

zs.sl(s-s)0= + _ o R. -_-_
i=l _S0 I oo0j

[ ]
-1 _8i t(ti " to) -1

go (s" S)o + _ e R. (a - _)i
i= 1 _S 0 I

From 23.51 and Z3. Z9

Z3.52 I"0 FO + _ i -to) -1 1-- e R.

i=l _S 0 1 _S 0

EquationZ3.51 is a Taylor series expansion valid in terms of any vector
A ^

SO in the region of convergence^about SO. To find SO we set SO = SOn, which

is the current best estimate of S0, and then iterate until convergence.

"_ -1 x (t i "t O) -1
23.53 S0n+l SOn + F0 + _ _)8"_ k _8i- _ e R.

i=l _Son * _Son

-I (E.Sn) 0 + _E_ _ ,'to) -Ie R. (o_ - 8n) i
i= I _Son *
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If the convergence criteria are met after n iterations, then consider that

^

' 23.54 SO = Sn

h

. Then SO is the initialconditions for integrating the equations of motion from^

t O to t m to obtain Sm. By inspect;.on of 23.51, 23. i:.g, and 23.54_ after the n

iterations consider

-^ - 1 (ti to) -1 ,

z3.55 ro = i+ al3.'r e R. aB.
i=l aSon 1 aSon

a ^

Then F 0 is mapped to rm as

T

^ _S m X (tm - to) ^ _S

Z3.56 F _ e F0 m
m _S 0 _S 0

Inspection of the above shows £hat the well-known Bayes is the same as

before, the only alteration being the method of downweighting data.
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